Abstract

Two-wavelength holography has been shown to be quite useful for testing aspheric surfaces since it can produce interferograms with a wide range of sensitivities. However, TWH has the drawback that the accuracy attainable from measurements on photographs of the fringes is limited. It is shown how this limitation can be overcome by using digital electronic techniques to evaluate the phase distribution in the interference pattern.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. MacGovern, J. C. Wyant, “Computer Generated Holograms for Testing Optical Elements,” Appl. Opt. 10, 619 (1971).
    [CrossRef] [PubMed]
  2. J. C. Wyant, V. P. Bennett, “Using Computer Generated Holograms to Test Aspheric Wavefronts,” Appl. Opt. 11, 2833 (1972).
    [CrossRef] [PubMed]
  3. J. C. Wyant, P. K. O’Neill, “Computer Generated Hologram Null Test of Aspheric Wavefronts,” Appl. Opt. 13, 2762 (1974).
    [CrossRef] [PubMed]
  4. J. C. Wyant, “Testing Aspherics Using Two-Wavelength Holography,” Appl. Opt. 10, 2113 (1971).
    [CrossRef] [PubMed]
  5. P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393 (1982).
    [CrossRef]
  6. P. Hariharan, B. F. Oreb, N. Brown, “Real-Time Holography Interferometry: A Micro-Computer System for the Measurement of Vector Displacements,” Appl. Opt. 22, 876 (1983).
    [CrossRef] [PubMed]
  7. P. Hariharan, B. F. Oreb, A. J. Leistner, “High Precision Digital Interferometry: Its Application to the Production of an Ultrathin Solid Fabry Perot Etalon,” Opt. Eng. 23, 294 (1984).
    [CrossRef]
  8. J. Schwider, R. Burow, K. E. Elssner, J. Grazanna, R. Spolaczyk, K. Merkel, “Digital Wave-Front Measuring Interferometry: Some Systematic Error Sources,” Appl. Opt. 23, 3421 (1983).
    [CrossRef]

1984

P. Hariharan, B. F. Oreb, A. J. Leistner, “High Precision Digital Interferometry: Its Application to the Production of an Ultrathin Solid Fabry Perot Etalon,” Opt. Eng. 23, 294 (1984).
[CrossRef]

1983

1982

P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393 (1982).
[CrossRef]

1974

1972

1971

Bennett, V. P.

Brown, N.

P. Hariharan, B. F. Oreb, N. Brown, “Real-Time Holography Interferometry: A Micro-Computer System for the Measurement of Vector Displacements,” Appl. Opt. 22, 876 (1983).
[CrossRef] [PubMed]

P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393 (1982).
[CrossRef]

Burow, R.

Elssner, K. E.

Grazanna, J.

Hariharan, P.

P. Hariharan, B. F. Oreb, A. J. Leistner, “High Precision Digital Interferometry: Its Application to the Production of an Ultrathin Solid Fabry Perot Etalon,” Opt. Eng. 23, 294 (1984).
[CrossRef]

P. Hariharan, B. F. Oreb, N. Brown, “Real-Time Holography Interferometry: A Micro-Computer System for the Measurement of Vector Displacements,” Appl. Opt. 22, 876 (1983).
[CrossRef] [PubMed]

P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393 (1982).
[CrossRef]

Leistner, A. J.

P. Hariharan, B. F. Oreb, A. J. Leistner, “High Precision Digital Interferometry: Its Application to the Production of an Ultrathin Solid Fabry Perot Etalon,” Opt. Eng. 23, 294 (1984).
[CrossRef]

MacGovern, A. J.

Merkel, K.

O’Neill, P. K.

Oreb, B. F.

P. Hariharan, B. F. Oreb, A. J. Leistner, “High Precision Digital Interferometry: Its Application to the Production of an Ultrathin Solid Fabry Perot Etalon,” Opt. Eng. 23, 294 (1984).
[CrossRef]

P. Hariharan, B. F. Oreb, N. Brown, “Real-Time Holography Interferometry: A Micro-Computer System for the Measurement of Vector Displacements,” Appl. Opt. 22, 876 (1983).
[CrossRef] [PubMed]

P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393 (1982).
[CrossRef]

Schwider, J.

Spolaczyk, R.

Wyant, J. C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical system used to test aspheric surfaces using two-wavelength holography.

Fig. 2
Fig. 2

Contour map and 3-D plot of an aspheric wave front obtained at a wavelength of 488 nm. Contour interval = 0.5 wavelength; maximum deviation from the reference sphere = 2.792 wavelengths.

Fig. 3
Fig. 3

Contour map and 3-D plot obtained using two-wavelength holography (equivalent wavelength, 9.47 μm). Contour interval = 0.05 wavelength; maximum deviation from a reference sphere = 0.158 wavelength.

Fig. 4
Fig. 4

Contour map and 3-D plot obtained using two-wavelength holography (equivalent wavelength, 9.47 μm); data averaged over a 3 × 3 grid centered on each point. Contour interval = 0.05 wavelength; maximum deviation from a reference sphere = 0.150 wavelength.

Tables (1)

Tables Icon

Table I Comparison of Values in Wavelengths Obtained for the Deviation of an Aspheric Surface From a Reference Sphere

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ eq = λ 1 λ 2 / λ 1 - λ 2 .
( 1 / 3 ) tan ( ϕ ) = ( I 3 - I 2 ) / ( 2 I 1 - I 2 - I 3 ) .

Metrics