Abstract

The absorption spectra of three hydrazines and four of their air-oxidation products were measured in the 9–12-μm spectral region with a Fourier transform infrared (FTIR) spectrometer with a 0.05-cm−1 resolution to determine absorption coefficients at CO2 and tunable diode laser wavelengths. The measurements agreed well with published CO2 laser determinations for many of the absorption coefficients, except where the published values are thought to be in error. The coefficients were then used to estimate the sensitivity for remote detection of these gases using CO2 and tunable diode lasers in long-path differential absorption measurements.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Grant, R. T. Menzies, “A Survey of Laser and Selected Optical Systems for Remote Measurement of Pollutant Gas Concentrations,” J. Air Pollut. Control Assoc. 33, 187 (1983).
    [CrossRef]
  2. R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).
  3. G. A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, “Photoacoustic Spectroscopy,” Rev. Sci. Instrum. 54, 797 (1983).
    [CrossRef]
  4. D. T. Cassidy, J. Reid, “Atmospheric Pressure Monitoring of Trace Gases Using Tunable Diode Lasers,” Appl. Opt. 21, 1185 (1982).
    [CrossRef] [PubMed]
  5. H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, “Tunable Diode Laser Systems for Measuring Trace Gases in Trophospheric Air,” Environ. Sci. Technol. 17, 352A (1983).
    [PubMed]
  6. R. R. Patty, G. M. Russwurm, W. A. McClenny, D. R. Morgan, “CO2 Laser Absorption Coefficients for Determining Ambient Level of O3, NH3, and C2H4,” Appl. Opt. 13, 2850 (1974).
    [CrossRef] [PubMed]
  7. R. T. Menzies, “Ozone Spectroscopy with a CO2 Waveguide Laser,” Appl. Opt. 15, 2597 (1976).
    [CrossRef] [PubMed]
  8. J. Boscher, G. Schafer, W. Wiesemann, “Gasfernanalyse mit CO2-Laser,” Battelle Institut e.V., D-6000 Frankfurt am Main, W. Germany (1979).
  9. A. Mayer, J. Comera, H. Charpentier, C. Jaussaud, “Absorption Coefficients of Various Pollutant Gases at CO2 Laser Wavelengths; Application to the Remote Sensing of those Pollutants,” Appl. Opt. 17, 391 (1978); Erratum, Appl. Opt. 19, 1572 (1980).
    [CrossRef] [PubMed]
  10. U. Persson, B. Marthinsson, J. Johansson, S. T. Eng, “Temperature and Development of NH3 and C2H4 Absorption Cross Sections at CO2 Laser Wavelengths,” Appl. Opt. 19, 1711 (1980).
    [CrossRef] [PubMed]
  11. R. J. Brewer, C. W. Bruce, J. L. Mater, “Optoacoustic Spectroscopy of C2H6 at the 9- and 10-μm 12C16O2 Laser Wavelengths,” Appl. Opt. 21, 4092 (1982).
    [CrossRef] [PubMed]
  12. G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, “Carbon Dioxide Laser Absorption Spectra and Low ppb Photoacoustic Detection of Hydrazine Fuels,” Appl. Opt. 19, 2726 (1980).
    [CrossRef] [PubMed]
  13. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser Remote Sensing of Hydrazine, MMH, and UDMH Using a Differential-Absorption CO2 Lidar,” Appl. OPt. 21, 2275 (1982).
    [CrossRef] [PubMed]
  14. G. L. Loper, G. R. Sasaki, M. A. Stamps, “Carbon Dioxide Laser Absorption Spectra of Toxic Industrial Compounds,” Appl. Opt. 21, 1648 (1982).
    [CrossRef] [PubMed]
  15. P. Andersson, U. Persson, “Absorption Coefficients at CO2 Laser Wavelengths for Toluene, m-sylene, o-xylene, and p-xylene,” Appl. Opt. 23, 192 (1984).
    [CrossRef] [PubMed]
  16. J. Bosher, G. Schäfer, W. Englisch, W. Wiesemann, “Sulfur Dioxide Absorption Cross Sections for 12C18O2 Laser Lines Around 9 μm,” Appl. Opt. 17, 3347 (1978).
    [CrossRef]
  17. B. D. Green, J. I. Steinfeld, “Absorption Coefficients for Fourteen Gases at CO2 Laser Frequencies,” Appl. Opt. 15, 1688 (1976).
    [CrossRef] [PubMed]
  18. M. S. Shumate, R. T. Menzies, J. S. Margolis, L. G. Rosengren, “Water Vapor Absorption of Carbon Dioxide Laser Radiation,” Appl. Opt. 15, 2480 (1976).
    [CrossRef] [PubMed]
  19. J. Nordstrom, M. E. Thomas, J. C. Peterson, E. K. Damon, R. K. Long, “Effects of Oxygen Addition on Pressure Broadened Water-Vapor Absorption in the 10-μm Region,” Appl. Opt. 17, 2724 (1978).
    [CrossRef] [PubMed]
  20. J. S. Ryan, M. H. Hubert, R. A. Crane, “Water-Vapor Absorption at Isotopic CO2 Laser Wavelengths,” Appl. Opt. 22, 711 (1983); Erratum, Appl. Opt. 23, 1302 (1984).
    [CrossRef] [PubMed]
  21. G. L. Loper, M. A. O’Neill, J. A. Gelbwachs, “Water-Vapor Continuum CO2 Laser Absorption Spectra Between 27°C and −10°C,” Appl. Opt. 22, 3701 (1983).
    [CrossRef] [PubMed]
  22. N. Menyuk, D. K. Killinger, “Assessment of Relative Error Sources in IR DIAL Measurement Accuracy,” Appl. Opt. 22, 2690 (1983).
    [CrossRef] [PubMed]
  23. R. J. Brewer, C. W. Bruce, “Photoacoustic Spectroscopy of NH3 at the 9- and 10-μm 12C16O2 Laser Wavelengths,” Appl. Opt. 17, 3746 (1978).
    [CrossRef] [PubMed]
  24. C. Freed, L. C. Bradley, R. G. O’Donnell, “Absolute Frequencies of Lasing Transitions in Seven CO2 Isotopic Species,’ IEEE J. Quantum Electron. QE-16, 1195(1980).
    [CrossRef]
  25. E. D. Hinkley, R. T. Ku, K. W. Nill, J. F. Butler, “Long-path Monitoring: Advanced Instrumentation with a Tunable Diode Laser,” Appl. Opt. 15, 1653 (1976).
    [CrossRef] [PubMed]
  26. M. S. Shumate, S. Lundqvist, U. Persson, S. T. Eng, “Differential Reflectance of Natural and Man-made Materials at CO2 Laser Wavelengths,” Appl. Opt. 21, 2386 (1982).
    [CrossRef] [PubMed]
  27. W. B. Grant, “Effect of Differential Spectral Reflectance on DIAL Measurements Using Topographic Targets,” Appl. Opt. 21, 2390 (1982).
    [CrossRef] [PubMed]
  28. W. B. Grant, E. D. Hinkley, “Laser System for Natural Gas Detection—Phase 1—Laboratory Feasibility Studies,” Annual Report 5035-525 by JPL (July1982).
  29. C. R. Webster, W. B. Grant, “Tunable-Diode-Laser Remote Measurement of Atmospheric Gases Using Topographic Targets,” Appl. Opt. 22, 1952 (1983).
    [CrossRef] [PubMed]
  30. J. Reid, R. L. Sinclair, W. B. Grant, R. T. Menzies, “High Sensitivity Detection of Trace Gases at Atmospheric Pressure Using Tunable Diode Lasers,” accepted for publication in Optical & Quantum Electronics, (1984).
  31. G. C. Bjorklund, “Frequency-Modulation Spectroscopy—a New Method for Measuring Weak Absorption and Dispersions,” Opt Lett. 5, 15 (1980).
    [CrossRef] [PubMed]
  32. E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Techniques for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Transfer 30, 289 (1983).
    [CrossRef]
  33. W. Lenth, “Optical Heterodyne Spectroscopy with Frequency and Amplitude Modulated Semiconductor Laser,” Opt. Lett. 8, 575 (1983).
    [CrossRef] [PubMed]
  34. II–VI Inc., Saxonburg Blvd., Saxonburg, Penn. 16056.
  35. G. W. Sachse, P. K. Cheo, “A Microwave Tunable Laser Source for Remote Sensing Applications,” in Technical Digest, Workshop on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TuC4.

1984 (1)

1983 (9)

W. B. Grant, R. T. Menzies, “A Survey of Laser and Selected Optical Systems for Remote Measurement of Pollutant Gas Concentrations,” J. Air Pollut. Control Assoc. 33, 187 (1983).
[CrossRef]

G. A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, “Photoacoustic Spectroscopy,” Rev. Sci. Instrum. 54, 797 (1983).
[CrossRef]

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, “Tunable Diode Laser Systems for Measuring Trace Gases in Trophospheric Air,” Environ. Sci. Technol. 17, 352A (1983).
[PubMed]

J. S. Ryan, M. H. Hubert, R. A. Crane, “Water-Vapor Absorption at Isotopic CO2 Laser Wavelengths,” Appl. Opt. 22, 711 (1983); Erratum, Appl. Opt. 23, 1302 (1984).
[CrossRef] [PubMed]

G. L. Loper, M. A. O’Neill, J. A. Gelbwachs, “Water-Vapor Continuum CO2 Laser Absorption Spectra Between 27°C and −10°C,” Appl. Opt. 22, 3701 (1983).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, “Assessment of Relative Error Sources in IR DIAL Measurement Accuracy,” Appl. Opt. 22, 2690 (1983).
[CrossRef] [PubMed]

C. R. Webster, W. B. Grant, “Tunable-Diode-Laser Remote Measurement of Atmospheric Gases Using Topographic Targets,” Appl. Opt. 22, 1952 (1983).
[CrossRef] [PubMed]

E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Techniques for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Transfer 30, 289 (1983).
[CrossRef]

W. Lenth, “Optical Heterodyne Spectroscopy with Frequency and Amplitude Modulated Semiconductor Laser,” Opt. Lett. 8, 575 (1983).
[CrossRef] [PubMed]

1982 (6)

1980 (4)

U. Persson, B. Marthinsson, J. Johansson, S. T. Eng, “Temperature and Development of NH3 and C2H4 Absorption Cross Sections at CO2 Laser Wavelengths,” Appl. Opt. 19, 1711 (1980).
[CrossRef] [PubMed]

G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, “Carbon Dioxide Laser Absorption Spectra and Low ppb Photoacoustic Detection of Hydrazine Fuels,” Appl. Opt. 19, 2726 (1980).
[CrossRef] [PubMed]

C. Freed, L. C. Bradley, R. G. O’Donnell, “Absolute Frequencies of Lasing Transitions in Seven CO2 Isotopic Species,’ IEEE J. Quantum Electron. QE-16, 1195(1980).
[CrossRef]

G. C. Bjorklund, “Frequency-Modulation Spectroscopy—a New Method for Measuring Weak Absorption and Dispersions,” Opt Lett. 5, 15 (1980).
[CrossRef] [PubMed]

1978 (4)

1976 (4)

1974 (1)

Andersson, P.

Barrett, J. J.

G. A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, “Photoacoustic Spectroscopy,” Rev. Sci. Instrum. 54, 797 (1983).
[CrossRef]

Bjorklund, G. C.

E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Techniques for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Transfer 30, 289 (1983).
[CrossRef]

G. C. Bjorklund, “Frequency-Modulation Spectroscopy—a New Method for Measuring Weak Absorption and Dispersions,” Opt Lett. 5, 15 (1980).
[CrossRef] [PubMed]

Boscher, J.

J. Boscher, G. Schafer, W. Wiesemann, “Gasfernanalyse mit CO2-Laser,” Battelle Institut e.V., D-6000 Frankfurt am Main, W. Germany (1979).

Bosher, J.

Bradley, L. C.

C. Freed, L. C. Bradley, R. G. O’Donnell, “Absolute Frequencies of Lasing Transitions in Seven CO2 Isotopic Species,’ IEEE J. Quantum Electron. QE-16, 1195(1980).
[CrossRef]

Brewer, R. J.

Bruce, C. W.

Butler, J. F.

Calloway, A. R.

Cassidy, D. T.

Charpentier, H.

Cheo, P. K.

G. W. Sachse, P. K. Cheo, “A Microwave Tunable Laser Source for Remote Sensing Applications,” in Technical Digest, Workshop on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TuC4.

Comera, J.

Crane, R. A.

Damon, E. K.

DeFeo, W. E.

Eng, S. T.

Englisch, W.

Freed, C.

C. Freed, L. C. Bradley, R. G. O’Donnell, “Absolute Frequencies of Lasing Transitions in Seven CO2 Isotopic Species,’ IEEE J. Quantum Electron. QE-16, 1195(1980).
[CrossRef]

Gelbwachs, J. A.

Grant, W. B.

W. B. Grant, R. T. Menzies, “A Survey of Laser and Selected Optical Systems for Remote Measurement of Pollutant Gas Concentrations,” J. Air Pollut. Control Assoc. 33, 187 (1983).
[CrossRef]

C. R. Webster, W. B. Grant, “Tunable-Diode-Laser Remote Measurement of Atmospheric Gases Using Topographic Targets,” Appl. Opt. 22, 1952 (1983).
[CrossRef] [PubMed]

W. B. Grant, “Effect of Differential Spectral Reflectance on DIAL Measurements Using Topographic Targets,” Appl. Opt. 21, 2390 (1982).
[CrossRef] [PubMed]

W. B. Grant, E. D. Hinkley, “Laser System for Natural Gas Detection—Phase 1—Laboratory Feasibility Studies,” Annual Report 5035-525 by JPL (July1982).

J. Reid, R. L. Sinclair, W. B. Grant, R. T. Menzies, “High Sensitivity Detection of Trace Gases at Atmospheric Pressure Using Tunable Diode Lasers,” accepted for publication in Optical & Quantum Electronics, (1984).

Green, B. D.

Hastie, D. R.

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, “Tunable Diode Laser Systems for Measuring Trace Gases in Trophospheric Air,” Environ. Sci. Technol. 17, 352A (1983).
[PubMed]

Hinkley, E. D.

E. D. Hinkley, R. T. Ku, K. W. Nill, J. F. Butler, “Long-path Monitoring: Advanced Instrumentation with a Tunable Diode Laser,” Appl. Opt. 15, 1653 (1976).
[CrossRef] [PubMed]

W. B. Grant, E. D. Hinkley, “Laser System for Natural Gas Detection—Phase 1—Laboratory Feasibility Studies,” Annual Report 5035-525 by JPL (July1982).

Hubert, M. H.

Iguchi, T.

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, “Tunable Diode Laser Systems for Measuring Trace Gases in Trophospheric Air,” Environ. Sci. Technol. 17, 352A (1983).
[PubMed]

Jaussaud, C.

Johansson, J.

Killinger, D. K.

Ku, R. T.

Lenth, W.

Long, R. K.

Loper, G. L.

Lundqvist, S.

Mackay, G. I.

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, “Tunable Diode Laser Systems for Measuring Trace Gases in Trophospheric Air,” Environ. Sci. Technol. 17, 352A (1983).
[PubMed]

Margolis, J. S.

Marthinsson, B.

Mater, J. L.

Mayer, A.

McClenny, W. A.

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).

Menyuk, N.

Menzies, R. T.

W. B. Grant, R. T. Menzies, “A Survey of Laser and Selected Optical Systems for Remote Measurement of Pollutant Gas Concentrations,” J. Air Pollut. Control Assoc. 33, 187 (1983).
[CrossRef]

R. T. Menzies, “Ozone Spectroscopy with a CO2 Waveguide Laser,” Appl. Opt. 15, 2597 (1976).
[CrossRef] [PubMed]

M. S. Shumate, R. T. Menzies, J. S. Margolis, L. G. Rosengren, “Water Vapor Absorption of Carbon Dioxide Laser Radiation,” Appl. Opt. 15, 2480 (1976).
[CrossRef] [PubMed]

J. Reid, R. L. Sinclair, W. B. Grant, R. T. Menzies, “High Sensitivity Detection of Trace Gases at Atmospheric Pressure Using Tunable Diode Lasers,” accepted for publication in Optical & Quantum Electronics, (1984).

Morgan, D. R.

Nill, K. W.

Nordstrom, J.

O’Donnell, R. G.

C. Freed, L. C. Bradley, R. G. O’Donnell, “Absolute Frequencies of Lasing Transitions in Seven CO2 Isotopic Species,’ IEEE J. Quantum Electron. QE-16, 1195(1980).
[CrossRef]

O’Neill, M. A.

Patty, R. R.

Persson, U.

Peterson, J. C.

Pokrowsky, P.

E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Techniques for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Transfer 30, 289 (1983).
[CrossRef]

Reddy, K. V.

G. A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, “Photoacoustic Spectroscopy,” Rev. Sci. Instrum. 54, 797 (1983).
[CrossRef]

Reid, J.

D. T. Cassidy, J. Reid, “Atmospheric Pressure Monitoring of Trace Gases Using Tunable Diode Lasers,” Appl. Opt. 21, 1185 (1982).
[CrossRef] [PubMed]

J. Reid, R. L. Sinclair, W. B. Grant, R. T. Menzies, “High Sensitivity Detection of Trace Gases at Atmospheric Pressure Using Tunable Diode Lasers,” accepted for publication in Optical & Quantum Electronics, (1984).

Ridley, B. A.

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, “Tunable Diode Laser Systems for Measuring Trace Gases in Trophospheric Air,” Environ. Sci. Technol. 17, 352A (1983).
[PubMed]

Roche, K.

E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Techniques for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Transfer 30, 289 (1983).
[CrossRef]

Rosengren, L. G.

Russwurm, G. M.

Ryan, J. S.

Sachse, G. W.

G. W. Sachse, P. K. Cheo, “A Microwave Tunable Laser Source for Remote Sensing Applications,” in Technical Digest, Workshop on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TuC4.

Sasaki, G. R.

Schafer, G.

J. Boscher, G. Schafer, W. Wiesemann, “Gasfernanalyse mit CO2-Laser,” Battelle Institut e.V., D-6000 Frankfurt am Main, W. Germany (1979).

Schäfer, G.

Schiff, H. I.

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, “Tunable Diode Laser Systems for Measuring Trace Gases in Trophospheric Air,” Environ. Sci. Technol. 17, 352A (1983).
[PubMed]

Shumate, M. S.

Siebert, D. R.

G. A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, “Photoacoustic Spectroscopy,” Rev. Sci. Instrum. 54, 797 (1983).
[CrossRef]

Sinclair, R. L.

J. Reid, R. L. Sinclair, W. B. Grant, R. T. Menzies, “High Sensitivity Detection of Trace Gases at Atmospheric Pressure Using Tunable Diode Lasers,” accepted for publication in Optical & Quantum Electronics, (1984).

Stamps, M. A.

Steinfeld, J. I.

Thomas, M. E.

Webster, C. R.

West, G. A.

G. A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, “Photoacoustic Spectroscopy,” Rev. Sci. Instrum. 54, 797 (1983).
[CrossRef]

Whittaker, E. A.

E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Techniques for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Transfer 30, 289 (1983).
[CrossRef]

Wiesemann, W.

J. Bosher, G. Schäfer, W. Englisch, W. Wiesemann, “Sulfur Dioxide Absorption Cross Sections for 12C18O2 Laser Lines Around 9 μm,” Appl. Opt. 17, 3347 (1978).
[CrossRef]

J. Boscher, G. Schafer, W. Wiesemann, “Gasfernanalyse mit CO2-Laser,” Battelle Institut e.V., D-6000 Frankfurt am Main, W. Germany (1979).

Zapka, W.

E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Techniques for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Transfer 30, 289 (1983).
[CrossRef]

Appl. Opt. (21)

A. Mayer, J. Comera, H. Charpentier, C. Jaussaud, “Absorption Coefficients of Various Pollutant Gases at CO2 Laser Wavelengths; Application to the Remote Sensing of those Pollutants,” Appl. Opt. 17, 391 (1978); Erratum, Appl. Opt. 19, 1572 (1980).
[CrossRef] [PubMed]

U. Persson, B. Marthinsson, J. Johansson, S. T. Eng, “Temperature and Development of NH3 and C2H4 Absorption Cross Sections at CO2 Laser Wavelengths,” Appl. Opt. 19, 1711 (1980).
[CrossRef] [PubMed]

R. J. Brewer, C. W. Bruce, J. L. Mater, “Optoacoustic Spectroscopy of C2H6 at the 9- and 10-μm 12C16O2 Laser Wavelengths,” Appl. Opt. 21, 4092 (1982).
[CrossRef] [PubMed]

G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, “Carbon Dioxide Laser Absorption Spectra and Low ppb Photoacoustic Detection of Hydrazine Fuels,” Appl. Opt. 19, 2726 (1980).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser Remote Sensing of Hydrazine, MMH, and UDMH Using a Differential-Absorption CO2 Lidar,” Appl. OPt. 21, 2275 (1982).
[CrossRef] [PubMed]

G. L. Loper, G. R. Sasaki, M. A. Stamps, “Carbon Dioxide Laser Absorption Spectra of Toxic Industrial Compounds,” Appl. Opt. 21, 1648 (1982).
[CrossRef] [PubMed]

P. Andersson, U. Persson, “Absorption Coefficients at CO2 Laser Wavelengths for Toluene, m-sylene, o-xylene, and p-xylene,” Appl. Opt. 23, 192 (1984).
[CrossRef] [PubMed]

J. Bosher, G. Schäfer, W. Englisch, W. Wiesemann, “Sulfur Dioxide Absorption Cross Sections for 12C18O2 Laser Lines Around 9 μm,” Appl. Opt. 17, 3347 (1978).
[CrossRef]

B. D. Green, J. I. Steinfeld, “Absorption Coefficients for Fourteen Gases at CO2 Laser Frequencies,” Appl. Opt. 15, 1688 (1976).
[CrossRef] [PubMed]

M. S. Shumate, R. T. Menzies, J. S. Margolis, L. G. Rosengren, “Water Vapor Absorption of Carbon Dioxide Laser Radiation,” Appl. Opt. 15, 2480 (1976).
[CrossRef] [PubMed]

J. Nordstrom, M. E. Thomas, J. C. Peterson, E. K. Damon, R. K. Long, “Effects of Oxygen Addition on Pressure Broadened Water-Vapor Absorption in the 10-μm Region,” Appl. Opt. 17, 2724 (1978).
[CrossRef] [PubMed]

J. S. Ryan, M. H. Hubert, R. A. Crane, “Water-Vapor Absorption at Isotopic CO2 Laser Wavelengths,” Appl. Opt. 22, 711 (1983); Erratum, Appl. Opt. 23, 1302 (1984).
[CrossRef] [PubMed]

G. L. Loper, M. A. O’Neill, J. A. Gelbwachs, “Water-Vapor Continuum CO2 Laser Absorption Spectra Between 27°C and −10°C,” Appl. Opt. 22, 3701 (1983).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, “Assessment of Relative Error Sources in IR DIAL Measurement Accuracy,” Appl. Opt. 22, 2690 (1983).
[CrossRef] [PubMed]

R. J. Brewer, C. W. Bruce, “Photoacoustic Spectroscopy of NH3 at the 9- and 10-μm 12C16O2 Laser Wavelengths,” Appl. Opt. 17, 3746 (1978).
[CrossRef] [PubMed]

D. T. Cassidy, J. Reid, “Atmospheric Pressure Monitoring of Trace Gases Using Tunable Diode Lasers,” Appl. Opt. 21, 1185 (1982).
[CrossRef] [PubMed]

E. D. Hinkley, R. T. Ku, K. W. Nill, J. F. Butler, “Long-path Monitoring: Advanced Instrumentation with a Tunable Diode Laser,” Appl. Opt. 15, 1653 (1976).
[CrossRef] [PubMed]

M. S. Shumate, S. Lundqvist, U. Persson, S. T. Eng, “Differential Reflectance of Natural and Man-made Materials at CO2 Laser Wavelengths,” Appl. Opt. 21, 2386 (1982).
[CrossRef] [PubMed]

W. B. Grant, “Effect of Differential Spectral Reflectance on DIAL Measurements Using Topographic Targets,” Appl. Opt. 21, 2390 (1982).
[CrossRef] [PubMed]

R. R. Patty, G. M. Russwurm, W. A. McClenny, D. R. Morgan, “CO2 Laser Absorption Coefficients for Determining Ambient Level of O3, NH3, and C2H4,” Appl. Opt. 13, 2850 (1974).
[CrossRef] [PubMed]

R. T. Menzies, “Ozone Spectroscopy with a CO2 Waveguide Laser,” Appl. Opt. 15, 2597 (1976).
[CrossRef] [PubMed]

C. R. Webster, W. B. Grant, “Tunable-Diode-Laser Remote Measurement of Atmospheric Gases Using Topographic Targets,” Appl. Opt. 22, 1952 (1983).
[CrossRef] [PubMed]

Environ. Sci. Technol. (1)

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, “Tunable Diode Laser Systems for Measuring Trace Gases in Trophospheric Air,” Environ. Sci. Technol. 17, 352A (1983).
[PubMed]

IEEE J. Quantum Electron. (1)

C. Freed, L. C. Bradley, R. G. O’Donnell, “Absolute Frequencies of Lasing Transitions in Seven CO2 Isotopic Species,’ IEEE J. Quantum Electron. QE-16, 1195(1980).
[CrossRef]

J. Air Pollut. Control Assoc. (1)

W. B. Grant, R. T. Menzies, “A Survey of Laser and Selected Optical Systems for Remote Measurement of Pollutant Gas Concentrations,” J. Air Pollut. Control Assoc. 33, 187 (1983).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Techniques for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Transfer 30, 289 (1983).
[CrossRef]

Opt Lett. (1)

G. C. Bjorklund, “Frequency-Modulation Spectroscopy—a New Method for Measuring Weak Absorption and Dispersions,” Opt Lett. 5, 15 (1980).
[CrossRef] [PubMed]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

G. A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, “Photoacoustic Spectroscopy,” Rev. Sci. Instrum. 54, 797 (1983).
[CrossRef]

Other (6)

II–VI Inc., Saxonburg Blvd., Saxonburg, Penn. 16056.

G. W. Sachse, P. K. Cheo, “A Microwave Tunable Laser Source for Remote Sensing Applications,” in Technical Digest, Workshop on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TuC4.

J. Reid, R. L. Sinclair, W. B. Grant, R. T. Menzies, “High Sensitivity Detection of Trace Gases at Atmospheric Pressure Using Tunable Diode Lasers,” accepted for publication in Optical & Quantum Electronics, (1984).

J. Boscher, G. Schafer, W. Wiesemann, “Gasfernanalyse mit CO2-Laser,” Battelle Institut e.V., D-6000 Frankfurt am Main, W. Germany (1979).

R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).

W. B. Grant, E. D. Hinkley, “Laser System for Natural Gas Detection—Phase 1—Laboratory Feasibility Studies,” Annual Report 5035-525 by JPL (July1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Hydrazine absorptance in the 936–945-μm spectral region showing the coincidence with CO2 laser lines.

Fig. 2
Fig. 2

MMH absorptance in the 882–894-μm spectral region showing the coincidence with 13C16O2 laser lines.

Fig. 3
Fig. 3

MMH absorptance in the 964–972-μm spectral region showing the coincidence with 12C16O2 laser lines.

Fig. 4
Fig. 4

Methanol absorptance in the 1029–1038-μm spectral region showing the coincidence with CO2 laser lines.

Fig. 5
Fig. 5

UDMH absorptance in the 1138–1147-μm spectral region showing a good region for use of tunable diode lasers for remote sensing.

Fig. 6
Fig. 6

DMA absorptance in the 1019–1028-μm spectral region for use with TDLs.

Fig. 7
Fig. 7

DMA absorptance in the 1142–1148-μm spectral region for use with TDLs.

Fig. 8
Fig. 8

TMA absorptance in the 823–831-μm spectral region for use with TDLs.

Fig. 9
Fig. 9

TMA absorptance in the 1179–1188-μm spectral region for use with TDLs.

Tables (7)

Tables Icon

Table I NH3 Absorption Coefficients at CO2 Laser Frequenciesa

Tables Icon

Table II Comparison of Gas Absorption Coefficients at CO2 Laser Frequencies Determined Using an FTIR Spectrometer with Those Using CO2 Lasera,b

Tables Icon

Table III Comparison of Absorption Coefficients for the Hydrazines Determined In Three Laboratoriesa

Tables Icon

Table IV Selected Absorption Coefficients at Several Rare-isotope CO2 Laser Frequencies

Tables Icon

Table V Estimated Sensitivities for CO2 Laser Long-path Measurement of Hydrazine Fuel Gases

Tables Icon

Table VI Estimated Sensitivities for Tunable Diode Laser Long-path Measurements of Hydrazine Fuel Gases

Tables Icon

Table VII Estimated Sensitivities for Frequency-Modulation Spectroscopy Measurements of Hydrazine Fuel Gasesa

Metrics