Abstract

OH-concentration distributions and temperature profiles have been measured on a premixed propane–air flame by laser deflection techniques. Photothermal deflection spectroscopy has been utilized for the measurement of the OH radical. Both a low-spatial-resolution (near collinear) and high-spatial-resolution (crossed-beam) scheme were used to profile the premixed flame. An optoacoustic deflection technique was utilized for thermometry. Both average-temperature profiles and probability distribution functions were determined by this technique. A comparison with data obtained by the CARS technique demonstrated that no significant flame perturbation was occurring.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Measurements of Temperature and Concentration Fluctuations in Turbulent Diffusion Flames Using Pulsed Raman Spectroscopy,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), p. 1521.
    [CrossRef]
  2. A. C. Eckbreth, R. J. Hall, “CARS Concentration Sensitivity With and Without Nonresonant Background Suppression,” Combust. Sci. Technol. 25, 175 (1981).
    [CrossRef]
  3. J. W. Daily, “Saturation Effects in Laser Induced Fluorescence Spectroscopy,” Appl. Opt. 16, 568 (1977).
    [CrossRef] [PubMed]
  4. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Saturated-Fluorescence Measurements of the Hydroxyl Radical,” in Laser Probes for Combustion Chemistry, D. R. Crosley, Ed. (American Chemical Society, Washington, D. C., 1980), Vol. 134, p. 145.
    [CrossRef]
  5. D. R. Crosley, “Collisiqnal Effects on Laser-Induced Fluorescence Flame Measurements,” Opt. Eng. 20, 511 (1981).
    [CrossRef]
  6. B. Attal, K. Muller-Dethlefs, D. Debarrc, J. P. E. Taran, “Resonant CARS Spectroscopy of C2,” Appl. Phys. B 28, 121 (1982).
  7. B. Attal, D. Debarrc, K. Muller-Dethlefs, J. P. E. Taran, Rev. Phys. Appl. 18, 39 (1983).
    [CrossRef]
  8. J. E. Allen, W. R. Anderson, D. R. Crosley, “Optoacoustic Pulses in a Flame,” Opt. Lett. 1, 118 (1977).
    [CrossRef] [PubMed]
  9. K. Tennal, G. J. Salamo, R. Gupta, “Minority Species Concentration Measurements in Flames by the Photoacoustic Techniques,” Appl. Opt. 21, 2133 (1982).
    [CrossRef] [PubMed]
  10. A. Rose, J. D. Pyrum, G. J. Salamo, R. Gupta, in Proceedings, International Conference on Lasers ’82, R. C. Powell, Ed. (STS Press, McLean, Va., 1983).
  11. A. Rose, G. J. Salamo, R. Gupta, “Photoacoustic Deflection Spectroscopy: A New Specie-Specific Method for Combustion Diagnostics,” Appl. Opt. 23, 781 (1984).
    [CrossRef] [PubMed]
  12. A. Rose, J. D. Pyrum, C. Muzny, G. J. Salamo, R. Gupta, “Application of the Photothermal Deflection Technique to Combustion Diagnostics,” Appl. Opt. 21, 2663 (1982).
    [CrossRef] [PubMed]
  13. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal Deflection Spectroscopy and Detection,” Appl. Opt. 20, 1333 (1981).
    [CrossRef] [PubMed]
  14. A. Rose, J. D. Pyrum, G. J. Salamo, R. Gupta, “Photoacoustic Detection of OH Molecules in a Methane–Air Flame,” Appl. Opt. 23, 1573 (1984).
    [CrossRef] [PubMed]
  15. G. P. Smith, M. J. Dyer, D. R. Crosley, “Pulsed Laser Optoacoustic Detection of Flame Species,” Appl. Opt. 22, 3995 (1983).
    [CrossRef] [PubMed]
  16. W. Zapka, P. Pokrowsky, A. C. Tam, “Noncontact Optoacoustic Monitoring of Flame Temperature Profiles,” Opt. Lett. 7, 477 (1982).
    [CrossRef] [PubMed]
  17. M. Alden, H. Etner, G. Holmstedt, S. Svanberg, T. Högberg, “Single-Pulse Laser-Induced OH Fluorescence in an Atmospheric Flame, Spatially Resolved with a Diode Array Detector,” Appl. Opt. 21, 1236 (1982).
    [CrossRef] [PubMed]
  18. D. J. Dyer, D. R. Crosley, “Two-Dimensional Imaging of OH Laser-Induced Fluorescence in a Flame,” Opt. Lett. 7, 382 (1982).
    [CrossRef] [PubMed]
  19. See, for example, D. C. Fourguette, M. B. Long, “Highly Localized Pressure Perturbations Induced by Laser Absorptive Heating in the Shear Layer of a Gas Jet,” Opt. Lett. 8, 605 (1983), and references therein.
    [CrossRef] [PubMed]
  20. S. Gordon, B. J. McBride, “Computer Program for Calculation of Complex Equilibrium Composition Rocket Performances, Incident and Reflected Shocks, and Chapman-Junget Detonations,” NASA SP-273-1971, NTIS N71-37775 (NTIS, Springfield, Va., 1971).
  21. L. P. Goss, G. L. Switzer, P. W. Schreiber, “Flame Studies with the Coherent Anti-Stokes Raman Spectroscopy Technique,” J. Energy 7, 389 (1983).
    [CrossRef]
  22. L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, “Temperature and Species-Concentration Measurements in Turbulent Flames by the CARS Techniques,” J. Energy 7, 403 (1983).
    [CrossRef]
  23. L. P. Goss, B. G. MacDonald, D. D. Trump, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Paper No. AIAA-83-1480 presented at the AIAA Eighteenth Thermophysics Conference, June 1983, Montreal, Canada.

1984 (2)

1983 (5)

G. P. Smith, M. J. Dyer, D. R. Crosley, “Pulsed Laser Optoacoustic Detection of Flame Species,” Appl. Opt. 22, 3995 (1983).
[CrossRef] [PubMed]

See, for example, D. C. Fourguette, M. B. Long, “Highly Localized Pressure Perturbations Induced by Laser Absorptive Heating in the Shear Layer of a Gas Jet,” Opt. Lett. 8, 605 (1983), and references therein.
[CrossRef] [PubMed]

L. P. Goss, G. L. Switzer, P. W. Schreiber, “Flame Studies with the Coherent Anti-Stokes Raman Spectroscopy Technique,” J. Energy 7, 389 (1983).
[CrossRef]

L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, “Temperature and Species-Concentration Measurements in Turbulent Flames by the CARS Techniques,” J. Energy 7, 403 (1983).
[CrossRef]

B. Attal, D. Debarrc, K. Muller-Dethlefs, J. P. E. Taran, Rev. Phys. Appl. 18, 39 (1983).
[CrossRef]

1982 (6)

1981 (3)

D. R. Crosley, “Collisiqnal Effects on Laser-Induced Fluorescence Flame Measurements,” Opt. Eng. 20, 511 (1981).
[CrossRef]

A. C. Eckbreth, R. J. Hall, “CARS Concentration Sensitivity With and Without Nonresonant Background Suppression,” Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal Deflection Spectroscopy and Detection,” Appl. Opt. 20, 1333 (1981).
[CrossRef] [PubMed]

1977 (2)

Alden, M.

Allen, J. E.

Amer, N. M.

Anderson, W. R.

Attal, B.

B. Attal, D. Debarrc, K. Muller-Dethlefs, J. P. E. Taran, Rev. Phys. Appl. 18, 39 (1983).
[CrossRef]

B. Attal, K. Muller-Dethlefs, D. Debarrc, J. P. E. Taran, “Resonant CARS Spectroscopy of C2,” Appl. Phys. B 28, 121 (1982).

Boccara, A. C.

Crosley, D. R.

Daily, J. W.

Debarrc, D.

B. Attal, D. Debarrc, K. Muller-Dethlefs, J. P. E. Taran, Rev. Phys. Appl. 18, 39 (1983).
[CrossRef]

B. Attal, K. Muller-Dethlefs, D. Debarrc, J. P. E. Taran, “Resonant CARS Spectroscopy of C2,” Appl. Phys. B 28, 121 (1982).

Drake, M. D.

M. D. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Measurements of Temperature and Concentration Fluctuations in Turbulent Diffusion Flames Using Pulsed Raman Spectroscopy,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), p. 1521.
[CrossRef]

Dyer, D. J.

Dyer, M. J.

Eckbreth, A. C.

A. C. Eckbreth, R. J. Hall, “CARS Concentration Sensitivity With and Without Nonresonant Background Suppression,” Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

Etner, H.

Fourguette, D. C.

Fournier, D.

Gerhold, B. W.

M. D. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Measurements of Temperature and Concentration Fluctuations in Turbulent Diffusion Flames Using Pulsed Raman Spectroscopy,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), p. 1521.
[CrossRef]

Gordon, S.

S. Gordon, B. J. McBride, “Computer Program for Calculation of Complex Equilibrium Composition Rocket Performances, Incident and Reflected Shocks, and Chapman-Junget Detonations,” NASA SP-273-1971, NTIS N71-37775 (NTIS, Springfield, Va., 1971).

Goss, L. P.

L. P. Goss, G. L. Switzer, P. W. Schreiber, “Flame Studies with the Coherent Anti-Stokes Raman Spectroscopy Technique,” J. Energy 7, 389 (1983).
[CrossRef]

L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, “Temperature and Species-Concentration Measurements in Turbulent Flames by the CARS Techniques,” J. Energy 7, 403 (1983).
[CrossRef]

L. P. Goss, B. G. MacDonald, D. D. Trump, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Paper No. AIAA-83-1480 presented at the AIAA Eighteenth Thermophysics Conference, June 1983, Montreal, Canada.

Gupta, R.

Hall, R. J.

A. C. Eckbreth, R. J. Hall, “CARS Concentration Sensitivity With and Without Nonresonant Background Suppression,” Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

Högberg, T.

Holmstedt, G.

Jackson, W. B.

Lapp, M.

M. D. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Measurements of Temperature and Concentration Fluctuations in Turbulent Diffusion Flames Using Pulsed Raman Spectroscopy,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), p. 1521.
[CrossRef]

Laurendeau, N. M.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Saturated-Fluorescence Measurements of the Hydroxyl Radical,” in Laser Probes for Combustion Chemistry, D. R. Crosley, Ed. (American Chemical Society, Washington, D. C., 1980), Vol. 134, p. 145.
[CrossRef]

Long, M. B.

Lucht, R. P.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Saturated-Fluorescence Measurements of the Hydroxyl Radical,” in Laser Probes for Combustion Chemistry, D. R. Crosley, Ed. (American Chemical Society, Washington, D. C., 1980), Vol. 134, p. 145.
[CrossRef]

MacDonald, B. G.

L. P. Goss, B. G. MacDonald, D. D. Trump, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Paper No. AIAA-83-1480 presented at the AIAA Eighteenth Thermophysics Conference, June 1983, Montreal, Canada.

McBride, B. J.

S. Gordon, B. J. McBride, “Computer Program for Calculation of Complex Equilibrium Composition Rocket Performances, Incident and Reflected Shocks, and Chapman-Junget Detonations,” NASA SP-273-1971, NTIS N71-37775 (NTIS, Springfield, Va., 1971).

Muller-Dethlefs, K.

B. Attal, D. Debarrc, K. Muller-Dethlefs, J. P. E. Taran, Rev. Phys. Appl. 18, 39 (1983).
[CrossRef]

B. Attal, K. Muller-Dethlefs, D. Debarrc, J. P. E. Taran, “Resonant CARS Spectroscopy of C2,” Appl. Phys. B 28, 121 (1982).

Muzny, C.

Penney, C. M.

M. D. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Measurements of Temperature and Concentration Fluctuations in Turbulent Diffusion Flames Using Pulsed Raman Spectroscopy,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), p. 1521.
[CrossRef]

Pokrowsky, P.

Pyrum, J. D.

Rose, A.

Salamo, G. J.

Schreiber, P. W.

L. P. Goss, G. L. Switzer, P. W. Schreiber, “Flame Studies with the Coherent Anti-Stokes Raman Spectroscopy Technique,” J. Energy 7, 389 (1983).
[CrossRef]

L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, “Temperature and Species-Concentration Measurements in Turbulent Flames by the CARS Techniques,” J. Energy 7, 403 (1983).
[CrossRef]

Smith, G. P.

Svanberg, S.

Sweeney, D. W.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Saturated-Fluorescence Measurements of the Hydroxyl Radical,” in Laser Probes for Combustion Chemistry, D. R. Crosley, Ed. (American Chemical Society, Washington, D. C., 1980), Vol. 134, p. 145.
[CrossRef]

Switzer, G. L.

L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, “Temperature and Species-Concentration Measurements in Turbulent Flames by the CARS Techniques,” J. Energy 7, 403 (1983).
[CrossRef]

L. P. Goss, G. L. Switzer, P. W. Schreiber, “Flame Studies with the Coherent Anti-Stokes Raman Spectroscopy Technique,” J. Energy 7, 389 (1983).
[CrossRef]

L. P. Goss, B. G. MacDonald, D. D. Trump, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Paper No. AIAA-83-1480 presented at the AIAA Eighteenth Thermophysics Conference, June 1983, Montreal, Canada.

Tam, A. C.

Taran, J. P. E.

B. Attal, D. Debarrc, K. Muller-Dethlefs, J. P. E. Taran, Rev. Phys. Appl. 18, 39 (1983).
[CrossRef]

B. Attal, K. Muller-Dethlefs, D. Debarrc, J. P. E. Taran, “Resonant CARS Spectroscopy of C2,” Appl. Phys. B 28, 121 (1982).

Tennal, K.

Trump, D. D.

L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, “Temperature and Species-Concentration Measurements in Turbulent Flames by the CARS Techniques,” J. Energy 7, 403 (1983).
[CrossRef]

L. P. Goss, B. G. MacDonald, D. D. Trump, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Paper No. AIAA-83-1480 presented at the AIAA Eighteenth Thermophysics Conference, June 1983, Montreal, Canada.

Warshaw, S.

M. D. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Measurements of Temperature and Concentration Fluctuations in Turbulent Diffusion Flames Using Pulsed Raman Spectroscopy,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), p. 1521.
[CrossRef]

Zapka, W.

Appl. Opt. (8)

Appl. Phys. B (1)

B. Attal, K. Muller-Dethlefs, D. Debarrc, J. P. E. Taran, “Resonant CARS Spectroscopy of C2,” Appl. Phys. B 28, 121 (1982).

Combust. Sci. Technol. (1)

A. C. Eckbreth, R. J. Hall, “CARS Concentration Sensitivity With and Without Nonresonant Background Suppression,” Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

J. Energy (2)

L. P. Goss, G. L. Switzer, P. W. Schreiber, “Flame Studies with the Coherent Anti-Stokes Raman Spectroscopy Technique,” J. Energy 7, 389 (1983).
[CrossRef]

L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, “Temperature and Species-Concentration Measurements in Turbulent Flames by the CARS Techniques,” J. Energy 7, 403 (1983).
[CrossRef]

Opt. Eng. (1)

D. R. Crosley, “Collisiqnal Effects on Laser-Induced Fluorescence Flame Measurements,” Opt. Eng. 20, 511 (1981).
[CrossRef]

Opt. Lett. (4)

Rev. Phys. Appl. (1)

B. Attal, D. Debarrc, K. Muller-Dethlefs, J. P. E. Taran, Rev. Phys. Appl. 18, 39 (1983).
[CrossRef]

Other (5)

M. D. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Measurements of Temperature and Concentration Fluctuations in Turbulent Diffusion Flames Using Pulsed Raman Spectroscopy,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), p. 1521.
[CrossRef]

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Saturated-Fluorescence Measurements of the Hydroxyl Radical,” in Laser Probes for Combustion Chemistry, D. R. Crosley, Ed. (American Chemical Society, Washington, D. C., 1980), Vol. 134, p. 145.
[CrossRef]

S. Gordon, B. J. McBride, “Computer Program for Calculation of Complex Equilibrium Composition Rocket Performances, Incident and Reflected Shocks, and Chapman-Junget Detonations,” NASA SP-273-1971, NTIS N71-37775 (NTIS, Springfield, Va., 1971).

L. P. Goss, B. G. MacDonald, D. D. Trump, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Paper No. AIAA-83-1480 presented at the AIAA Eighteenth Thermophysics Conference, June 1983, Montreal, Canada.

A. Rose, J. D. Pyrum, G. J. Salamo, R. Gupta, in Proceedings, International Conference on Lasers ’82, R. C. Powell, Ed. (STS Press, McLean, Va., 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic illustration of the PTDS experimental arrangement.

Fig. 2
Fig. 2

Schematic illustration of the optoacoustic experimental arrangement.

Fig. 3
Fig. 3

Typical single-shot photothermal signal from OH molecules in propane–air flame with probe and pump beams (a) near-collinear and (b) 12° crossed. Pump laser tuned to Q1(7) of OH at 3089.6 Å.

Fig. 4
Fig. 4

OH concentration profiles in propane–air flame at various heights above burner head. Probe and pump beams were near-collinear, giving low spatial resolution. Zero of abscissa represents center of burner.

Fig. 5
Fig. 5

Results similar to those of Fig. 4, with the flame being operated without a chimney. In these conditions, the flame was flickering at the rate of a few hertz; small oscillations in the figure represent the effect of flicker on OH density. OH peaks are reversed compared with those in Fig. 4, since the direction of the flame scan was reversed.

Fig. 6
Fig. 6

OH density profile of flame with higher spatial resolution (3 mm3). Note that OH density is lower in the center of the flame and OH density peaks at the edges are sharper than low-resolution data indicate.

Fig. 7
Fig. 7

Data similar to that of Fig. 6 with chimney removed. The flame, in this case, was flickering and wandered near the top.

Fig. 8
Fig. 8

Absorption spectrum of OH molecules. Photothermal signal strength was plotted as the pump laser frequency was scanned.

Fig. 9
Fig. 9

Optoacoustic deflection signals (a) in room air and (b) in a propane–air flame.

Fig. 10
Fig. 10

Average-temperature profiles taken in a propane–air flame by the optoacoustic technique.

Fig. 11
Fig. 11

Probability distribution functions obtained at flame locations (a) 4 cm, (b) 7 cm, and (c) 11 cm above the burner surface.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T = V 0 2 m ¯ R [ 1 + R C v ¯ ( T ) ] ,
T f T a = ( V f V a ) 2 .
T f T a = ( Δ t a Δ t f ) 2 ,

Metrics