Abstract

A Fizeau wavelength meter optimized for use with pulsed laser sources has been developed and characterize which demonstrates a cw resolution better than 2 parts in 107 and a pulsed resolution better than 1 part in 106. The static optical design is based on a Fizeau wedge interferometer, which together with spatial filtering and collimating optics is used to produce a pattern of parallel fringes which is imaged on a linear photodiode array and analyzed by a minicomputer. We describe a series of cw and pulsed measurements of various narrowband laser sources and examine the particular difficulties involved in pulsed laser measurements with the wavemeter.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Snyder, “Laser Wavelength Meters,” Laser Focus 55 (May1982).
  2. J. J. Snyder, “Fizeau Wavelength Meters,” in Laser Spectroscopy. III, J. L. Hall, J. L. Carlsten, Eds., (Springer, New York, 1977, p. 419.
  3. J. J. Snyder, “Algorithm for Fast Digital Analysis of Interference Fringes,” Appl. Opt. 19, 1223 (1980).
    [CrossRef] [PubMed]
  4. Philip R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), pp. 90–118.
  5. J. J. Snyder, “Fizeau Wavemeter,” Proc. Soc. Photo-Opt. Instrum. Eng. 288, 258 (1981).
  6. R. H. Stolen, “Fiber Raman Lasers,” in Fiber and Integrated Optics, D. B. Ostrowsky, Ed. (Plenum, New York, 1979), p. 157.
    [CrossRef]
  7. D. S. King, P. K. Schenck, K. C. Smyth, J. C. Travis, “Direct Calibration of Laser Wavelength and Bandwidth Using the Optogalvanic Effect in Hollow Cathode Lamps,” Appl. Opt. 16, 2617 (1977).
    [CrossRef] [PubMed]
  8. J. L. Gardner, “Wavefront Curvature in a Fizeau Wavemeter.” Opt. Lett. 8, 91 (1983).
    [CrossRef] [PubMed]
  9. C. K. Miller, Sandia National Laboratories, Albuquerque, N.M., internal report.
  10. M. G. Littman, H. J. Metcalf, “Spectrally Narrow Pulsed Dye Laser Without Beam Expander,” Appl. Opt. 17, 2224 (1978).
    [CrossRef] [PubMed]
  11. T. Hänsch, “Repetitively Pulsed Tunable Dye Laser for High Resolution Spectroscopy,” Appl. Opt 11, 895 (1972).
    [CrossRef] [PubMed]
  12. T. Hänsch, Stanford U., private communication.
  13. Quanta-Ray model DCR-1 Nd:YAG laser. The use of company or brand names is for illustrative purposes only and does not imply any product endorsement by the National Bureau of Standards.
  14. J. V. Foltz, D. H. Rank, T. A. Wiggins, J. Mol Spectrosc. 21, 203 (1966).
    [CrossRef]
  15. P. J. Brannon, C. H. Church, C. W. Peters, J. Mol. Spectrosc. 27, 44 (1968).
    [CrossRef]
  16. P. Esherick, A. Owyoung, “High-Resolution Stimulated Raman Spectroscopy,” in Advances in Infrared and Raman Spectroscopy, Vol. 9, R. J.H. Clark, R. E. Hester, Eds. (Heyden, Philadelphia, 1982); p. 130.

1983 (1)

1982 (1)

J. J. Snyder, “Laser Wavelength Meters,” Laser Focus 55 (May1982).

1981 (1)

J. J. Snyder, “Fizeau Wavemeter,” Proc. Soc. Photo-Opt. Instrum. Eng. 288, 258 (1981).

1980 (1)

1978 (1)

1977 (1)

1972 (1)

T. Hänsch, “Repetitively Pulsed Tunable Dye Laser for High Resolution Spectroscopy,” Appl. Opt 11, 895 (1972).
[CrossRef] [PubMed]

1968 (1)

P. J. Brannon, C. H. Church, C. W. Peters, J. Mol. Spectrosc. 27, 44 (1968).
[CrossRef]

1966 (1)

J. V. Foltz, D. H. Rank, T. A. Wiggins, J. Mol Spectrosc. 21, 203 (1966).
[CrossRef]

Bevington, Philip R.

Philip R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), pp. 90–118.

Brannon, P. J.

P. J. Brannon, C. H. Church, C. W. Peters, J. Mol. Spectrosc. 27, 44 (1968).
[CrossRef]

Church, C. H.

P. J. Brannon, C. H. Church, C. W. Peters, J. Mol. Spectrosc. 27, 44 (1968).
[CrossRef]

Esherick, P.

P. Esherick, A. Owyoung, “High-Resolution Stimulated Raman Spectroscopy,” in Advances in Infrared and Raman Spectroscopy, Vol. 9, R. J.H. Clark, R. E. Hester, Eds. (Heyden, Philadelphia, 1982); p. 130.

Foltz, J. V.

J. V. Foltz, D. H. Rank, T. A. Wiggins, J. Mol Spectrosc. 21, 203 (1966).
[CrossRef]

Gardner, J. L.

Hänsch, T.

T. Hänsch, “Repetitively Pulsed Tunable Dye Laser for High Resolution Spectroscopy,” Appl. Opt 11, 895 (1972).
[CrossRef] [PubMed]

T. Hänsch, Stanford U., private communication.

King, D. S.

Littman, M. G.

Metcalf, H. J.

Miller, C. K.

C. K. Miller, Sandia National Laboratories, Albuquerque, N.M., internal report.

Owyoung, A.

P. Esherick, A. Owyoung, “High-Resolution Stimulated Raman Spectroscopy,” in Advances in Infrared and Raman Spectroscopy, Vol. 9, R. J.H. Clark, R. E. Hester, Eds. (Heyden, Philadelphia, 1982); p. 130.

Peters, C. W.

P. J. Brannon, C. H. Church, C. W. Peters, J. Mol. Spectrosc. 27, 44 (1968).
[CrossRef]

Rank, D. H.

J. V. Foltz, D. H. Rank, T. A. Wiggins, J. Mol Spectrosc. 21, 203 (1966).
[CrossRef]

Schenck, P. K.

Smyth, K. C.

Snyder, J. J.

J. J. Snyder, “Laser Wavelength Meters,” Laser Focus 55 (May1982).

J. J. Snyder, “Fizeau Wavemeter,” Proc. Soc. Photo-Opt. Instrum. Eng. 288, 258 (1981).

J. J. Snyder, “Algorithm for Fast Digital Analysis of Interference Fringes,” Appl. Opt. 19, 1223 (1980).
[CrossRef] [PubMed]

J. J. Snyder, “Fizeau Wavelength Meters,” in Laser Spectroscopy. III, J. L. Hall, J. L. Carlsten, Eds., (Springer, New York, 1977, p. 419.

Stolen, R. H.

R. H. Stolen, “Fiber Raman Lasers,” in Fiber and Integrated Optics, D. B. Ostrowsky, Ed. (Plenum, New York, 1979), p. 157.
[CrossRef]

Travis, J. C.

Wiggins, T. A.

J. V. Foltz, D. H. Rank, T. A. Wiggins, J. Mol Spectrosc. 21, 203 (1966).
[CrossRef]

Appl. Opt (1)

T. Hänsch, “Repetitively Pulsed Tunable Dye Laser for High Resolution Spectroscopy,” Appl. Opt 11, 895 (1972).
[CrossRef] [PubMed]

Appl. Opt. (3)

J. Mol Spectrosc. (1)

J. V. Foltz, D. H. Rank, T. A. Wiggins, J. Mol Spectrosc. 21, 203 (1966).
[CrossRef]

J. Mol. Spectrosc. (1)

P. J. Brannon, C. H. Church, C. W. Peters, J. Mol. Spectrosc. 27, 44 (1968).
[CrossRef]

Laser Focus (1)

J. J. Snyder, “Laser Wavelength Meters,” Laser Focus 55 (May1982).

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. J. Snyder, “Fizeau Wavemeter,” Proc. Soc. Photo-Opt. Instrum. Eng. 288, 258 (1981).

Other (7)

R. H. Stolen, “Fiber Raman Lasers,” in Fiber and Integrated Optics, D. B. Ostrowsky, Ed. (Plenum, New York, 1979), p. 157.
[CrossRef]

C. K. Miller, Sandia National Laboratories, Albuquerque, N.M., internal report.

J. J. Snyder, “Fizeau Wavelength Meters,” in Laser Spectroscopy. III, J. L. Hall, J. L. Carlsten, Eds., (Springer, New York, 1977, p. 419.

Philip R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), pp. 90–118.

P. Esherick, A. Owyoung, “High-Resolution Stimulated Raman Spectroscopy,” in Advances in Infrared and Raman Spectroscopy, Vol. 9, R. J.H. Clark, R. E. Hester, Eds. (Heyden, Philadelphia, 1982); p. 130.

T. Hänsch, Stanford U., private communication.

Quanta-Ray model DCR-1 Nd:YAG laser. The use of company or brand names is for illustrative purposes only and does not imply any product endorsement by the National Bureau of Standards.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fizeau wedge interferometer. The wedged fused silica annular spacer is optically contacted to the interferometer flats and contains a channel for evacuating the interior region. The flats are antireflection coated on their outer surfaces and wedged perpendicular to the spacer wedge to eliminate spurious reflections.

Fig. 2
Fig. 2

Fringe patterns produced by the Fizeau wedge interferometer on a 1024-element photodiode array. The light source is a pulsed dye laser oscillator operating at λ = 723.6288 nm with a 0.004-nm linewidth. Photodiode spacing is 25 μm. The entire pattern (a) contains 124 peak and valley points shown individually in (b). The average fringe period is 16.3 photodiode elements.

Fig. 3
Fig. 3

Computer-generated fringe data sets which assume the intensity relation of Eq. (1) multiplied by an envelope function. In (a) the envelope is Gaussian; in (b) and (c) a sinusoidal modulation has been included. All three sets assume an input wavelength of 500 nm and produce an identical output wavelength (±2 parts in 108) when analyzed by the filtering and processing routines.

Fig. 4
Fig. 4

Wavemeter optical geometry.

Fig. 5
Fig. 5

Zero-shearing geometry converges both reflections from a single incident ray on a single point at the array. For our wavemeter the separation between interferometer and array is 20 cm and θ ≅ 11°.

Fig. 6
Fig. 6

Fringe data processing scheme.

Fig. 7
Fig. 7

Raman shifting apparatus: L and L, 50-cm focal length lenses; P, Pellin-Broca dispersing prism; M, mirror.

Tables (1)

Tables Icon

Table I Measured Raman Shifts

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = ½ [ 1 + cos ( 2 π x Λ ) ]
f ( x ) = 0 ; x > Δ 2 , x = 0 = 1 ; - Δ 2 x < 0 = - 1 ; 0 < x Δ 2 .
h ( x ) = - + I ( x ) f ( x - x ) d x = Λ 2 π [ cos ( π Δ Λ ) - 1 ] sin ( 2 π x Λ )
( h x ) x = 0 = cos ( π Δ Λ ) - 1 .
σ h = σ c 0.742 Λ = σ c 0.742 N / n ,
σ x = σ h [ ( h x ) x = 0 ] - 1 = σ c 0.742 N / n cos ( π Δ Λ ) - 1 = - 0.59 σ c N / n ,
σ i 2 = 2 ( 4 n + 1 ) 2 n ( 2 n - 1 ) σ x 2 2 n σ x 2 ,
σ s 2 = 12 2 n ( 2 n + 1 ) ( 2 n - 1 ) σ x 2 3 2 n 3 σ x 2 .
σ i σ i Λ 0.73 σ c N ( 2.3 × 10 - 2 ) σ c ,
σ s σ s Λ 0.63 σ c n N ( 3.9 × 10 - 4 ) σ c ,
R = σ i m ( 7.6 × 10 - 6 ) σ c ,
σ s 1 2 m 1 6000 ,

Metrics