Abstract

A new geometrical arrangement is proposed to improve performances of optical triangulation. Two scanners in synchronization allow a linear position sensor to be used for surface topography measurement. Besides a large increase in speed of measurement (approximately megahertz), the new geometry allows considerable reduction of the optical head size compared with usual geometries, so the shadow effects are reduced proportionally. It also provides a means to obtain a very large field of view without compromising on resolution. Geometrical analysis and experimental results are presented.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Bodlaj, E. Klement, “Remote Measurement of Distance and Thickness Using a Deflected Laser,” Appl. Opt. 15, 432 (1976).
    [Crossref]
  2. J. D. Boissonnat, F. Germain, “A New Approach to the Problem of Acquiring Randomly Oriented Workpieces of a Bin,” in Proceedings, Seventh International Joint Conference on Artificial Intelligence, 1981, pp. 796–802.
  3. M. D. Altschuler et al., “Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces,” Opt. Eng. 20, 953 (1981).
    [Crossref]
  4. M. Bernasconi et al., “Accuracy of Measurement Through Stereo Images,” in Proceedings, Fifth International Conference on Automated inspection and Product Control, 24–26 June, (1980), p. 309.
  5. F. Bien et al., “Absolute Distance Measurements by Variable Wavelength Interferometry,” Appl. Opt. 20, 400 (1981).
    [Crossref] [PubMed]
  6. J. M. Burry, “Contouring in Real-Time with Moiré Interference,” Opt. Commun. 41, 243 (1982).
    [Crossref]
  7. Z. Fuzessy, N. Abramson, “Measurements of 3-D Displacement: Sandwich Holography and Regulated Path Length Interferometry,” Appl. Opt. 21, 260 (1982).
    [Crossref] [PubMed]
  8. D. P. Himmel, “A Laser Measuring System for Automatic Industrial Inspection,” in Proceedings, Fourth International Joint Conference on Pattern Recognition, 1978 (IEEE, New York), pp. 952–954.
  9. G. Indebetouw, “A Simple Optical Non-Contact Profilometer,” Opt. Eng. 18, 63 (1979).
  10. K. E. Morander, “The Optocator. A High Precision, Non-Contacting System for Dimension and Surface Measurement and Control,” in Proceedings, Fifth International Conference on Automated Inspection and Product Control (1980), pp. 393–396.
  11. C. J. Page, H. Hassan, “Non-Contact Inspection of Complex Components Using a Rangefinder Vision System,” in Proceedings, First International Conference on Robot Vision and Sensory Controls (1981), pp. 245–254.
  12. F. Pipitone, “A Ranging Camera for 3-D Object Recognition,” Midwest Symposium on Circuits and Systems (1979), pp. 339–343.
  13. T. Sawatari, R. B. Zipin, “Optical Profile Transducer,” Opt. Eng. 18, 222 (1979).
    [Crossref]
  14. J. Taboada, “Coherent Optical Methods for Applications in Robot Visual Sensing,” Proc. Soc. Photo-Opt. Instrum. Eng. 283, 25 (1981).
  15. T. Kanade, H. Asada, “Non-Contact Visual Three-Dimensional Ranging Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 283, 48 (1981).
  16. D. Nitzan et al., “The Measurement and Use of Registered Reflectance and Range Data in Scene Analysis,” Proc. IEEE 65, 206 (1977).
    [Crossref]

1982 (2)

1981 (4)

F. Bien et al., “Absolute Distance Measurements by Variable Wavelength Interferometry,” Appl. Opt. 20, 400 (1981).
[Crossref] [PubMed]

M. D. Altschuler et al., “Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces,” Opt. Eng. 20, 953 (1981).
[Crossref]

J. Taboada, “Coherent Optical Methods for Applications in Robot Visual Sensing,” Proc. Soc. Photo-Opt. Instrum. Eng. 283, 25 (1981).

T. Kanade, H. Asada, “Non-Contact Visual Three-Dimensional Ranging Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 283, 48 (1981).

1979 (3)

G. Indebetouw, “A Simple Optical Non-Contact Profilometer,” Opt. Eng. 18, 63 (1979).

F. Pipitone, “A Ranging Camera for 3-D Object Recognition,” Midwest Symposium on Circuits and Systems (1979), pp. 339–343.

T. Sawatari, R. B. Zipin, “Optical Profile Transducer,” Opt. Eng. 18, 222 (1979).
[Crossref]

1977 (1)

D. Nitzan et al., “The Measurement and Use of Registered Reflectance and Range Data in Scene Analysis,” Proc. IEEE 65, 206 (1977).
[Crossref]

1976 (1)

V. Bodlaj, E. Klement, “Remote Measurement of Distance and Thickness Using a Deflected Laser,” Appl. Opt. 15, 432 (1976).
[Crossref]

Abramson, N.

Altschuler, M. D.

M. D. Altschuler et al., “Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces,” Opt. Eng. 20, 953 (1981).
[Crossref]

Asada, H.

T. Kanade, H. Asada, “Non-Contact Visual Three-Dimensional Ranging Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 283, 48 (1981).

Bernasconi, M.

M. Bernasconi et al., “Accuracy of Measurement Through Stereo Images,” in Proceedings, Fifth International Conference on Automated inspection and Product Control, 24–26 June, (1980), p. 309.

Bien, F.

Bodlaj, V.

V. Bodlaj, E. Klement, “Remote Measurement of Distance and Thickness Using a Deflected Laser,” Appl. Opt. 15, 432 (1976).
[Crossref]

Boissonnat, J. D.

J. D. Boissonnat, F. Germain, “A New Approach to the Problem of Acquiring Randomly Oriented Workpieces of a Bin,” in Proceedings, Seventh International Joint Conference on Artificial Intelligence, 1981, pp. 796–802.

Burry, J. M.

J. M. Burry, “Contouring in Real-Time with Moiré Interference,” Opt. Commun. 41, 243 (1982).
[Crossref]

Fuzessy, Z.

Germain, F.

J. D. Boissonnat, F. Germain, “A New Approach to the Problem of Acquiring Randomly Oriented Workpieces of a Bin,” in Proceedings, Seventh International Joint Conference on Artificial Intelligence, 1981, pp. 796–802.

Hassan, H.

C. J. Page, H. Hassan, “Non-Contact Inspection of Complex Components Using a Rangefinder Vision System,” in Proceedings, First International Conference on Robot Vision and Sensory Controls (1981), pp. 245–254.

Himmel, D. P.

D. P. Himmel, “A Laser Measuring System for Automatic Industrial Inspection,” in Proceedings, Fourth International Joint Conference on Pattern Recognition, 1978 (IEEE, New York), pp. 952–954.

Indebetouw, G.

G. Indebetouw, “A Simple Optical Non-Contact Profilometer,” Opt. Eng. 18, 63 (1979).

Kanade, T.

T. Kanade, H. Asada, “Non-Contact Visual Three-Dimensional Ranging Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 283, 48 (1981).

Klement, E.

V. Bodlaj, E. Klement, “Remote Measurement of Distance and Thickness Using a Deflected Laser,” Appl. Opt. 15, 432 (1976).
[Crossref]

Morander, K. E.

K. E. Morander, “The Optocator. A High Precision, Non-Contacting System for Dimension and Surface Measurement and Control,” in Proceedings, Fifth International Conference on Automated Inspection and Product Control (1980), pp. 393–396.

Nitzan, D.

D. Nitzan et al., “The Measurement and Use of Registered Reflectance and Range Data in Scene Analysis,” Proc. IEEE 65, 206 (1977).
[Crossref]

Page, C. J.

C. J. Page, H. Hassan, “Non-Contact Inspection of Complex Components Using a Rangefinder Vision System,” in Proceedings, First International Conference on Robot Vision and Sensory Controls (1981), pp. 245–254.

Pipitone, F.

F. Pipitone, “A Ranging Camera for 3-D Object Recognition,” Midwest Symposium on Circuits and Systems (1979), pp. 339–343.

Sawatari, T.

T. Sawatari, R. B. Zipin, “Optical Profile Transducer,” Opt. Eng. 18, 222 (1979).
[Crossref]

Taboada, J.

J. Taboada, “Coherent Optical Methods for Applications in Robot Visual Sensing,” Proc. Soc. Photo-Opt. Instrum. Eng. 283, 25 (1981).

Zipin, R. B.

T. Sawatari, R. B. Zipin, “Optical Profile Transducer,” Opt. Eng. 18, 222 (1979).
[Crossref]

Appl. Opt. (3)

Midwest Symposium on Circuits and Systems (1)

F. Pipitone, “A Ranging Camera for 3-D Object Recognition,” Midwest Symposium on Circuits and Systems (1979), pp. 339–343.

Opt. Commun. (1)

J. M. Burry, “Contouring in Real-Time with Moiré Interference,” Opt. Commun. 41, 243 (1982).
[Crossref]

Opt. Eng. (3)

M. D. Altschuler et al., “Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces,” Opt. Eng. 20, 953 (1981).
[Crossref]

T. Sawatari, R. B. Zipin, “Optical Profile Transducer,” Opt. Eng. 18, 222 (1979).
[Crossref]

G. Indebetouw, “A Simple Optical Non-Contact Profilometer,” Opt. Eng. 18, 63 (1979).

Proc. IEEE (1)

D. Nitzan et al., “The Measurement and Use of Registered Reflectance and Range Data in Scene Analysis,” Proc. IEEE 65, 206 (1977).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

J. Taboada, “Coherent Optical Methods for Applications in Robot Visual Sensing,” Proc. Soc. Photo-Opt. Instrum. Eng. 283, 25 (1981).

T. Kanade, H. Asada, “Non-Contact Visual Three-Dimensional Ranging Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 283, 48 (1981).

Other (5)

K. E. Morander, “The Optocator. A High Precision, Non-Contacting System for Dimension and Surface Measurement and Control,” in Proceedings, Fifth International Conference on Automated Inspection and Product Control (1980), pp. 393–396.

C. J. Page, H. Hassan, “Non-Contact Inspection of Complex Components Using a Rangefinder Vision System,” in Proceedings, First International Conference on Robot Vision and Sensory Controls (1981), pp. 245–254.

M. Bernasconi et al., “Accuracy of Measurement Through Stereo Images,” in Proceedings, Fifth International Conference on Automated inspection and Product Control, 24–26 June, (1980), p. 309.

J. D. Boissonnat, F. Germain, “A New Approach to the Problem of Acquiring Randomly Oriented Workpieces of a Bin,” in Proceedings, Seventh International Joint Conference on Artificial Intelligence, 1981, pp. 796–802.

D. P. Himmel, “A Laser Measuring System for Automatic Industrial Inspection,” in Proceedings, Fourth International Joint Conference on Pattern Recognition, 1978 (IEEE, New York), pp. 952–954.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Conventional triangulation geometry.

Fig. 2
Fig. 2

Synchronized scanning geometry.

Fig. 3
Fig. 3

Trajectory of the intersection of axis.

Fig. 4
Fig. 4

Dual-axis synchronized scanning geometry.

Fig. 5
Fig. 5

Autosynchronized geometry using multifacet pyramidal mirror.

Fig. 6
Fig. 6

Lateral effect photodiode.

Fig. 7
Fig. 7

Experimental prototype photograph showing the optical head, the object (shoe last) that has been scanned, and a display of the resulting measurements.

Fig. 8
Fig. 8

The 3-D camera outputs for two different inputs. Top photographs show intensity output, while the four others show the 3-D data.

Fig. 9
Fig. 9

Shadow effects.

Fig. 10
Fig. 10

Shadow effects reduction using two sensors.

Fig. 11
Fig. 11

Measurements on a rotating object.

Fig. 12
Fig. 12

A 360° range camera.

Fig. 13
Fig. 13

Use of an acoustooptic deflector to produce a reference surface of any shape.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

x = d · p [ p + f · l ( 2 l · tan θ + d ) ( l - f ) ( d · tan θ - 2 l ) ] - 1 ,
z = - d [ p ( l - f ) f · l + 2 l · tan θ + d d · tan θ - 2 l ] - 1 .
p = p + f · l · tan θ l - f [ 1 - p ( l - f ) · tan θ f · l ] - 1 ,
p = - d f 2 ( l - f )
z 1 = x tan ( θ - θ 0 ) ,
z 2 = ( x - d ) tan ( θ 0 + θ ) ,
tan θ 0 = - 2 l d .
z 1 = z 2 .
x 2 - d x - l d - d 4 l + d z + z 2 = 0.
( x - d / 2 ) 2 + ( z - l 2 - d 2 / 4 2 l ) 2 = ( l 2 + d 2 / 4 2 l ) 2 ,
R = l 2 + d 2 / 4 2 l
x 0 = d / 2 ,
z 0 = l 2 - d 2 / 4 2 l .
x = d · p [ p + f l ( l - f ) α ] - 1 ,
y = [ h - α ( x - d ) ] sin ϕ ,
z = h + { [ - h + α ( x - d ) ] cos ϕ } ,
α = d · tan θ - 2 l 2 l · tan θ + d ,

Metrics