Abstract

Damage thresholds of various high power laser coatings produced by Balzers were measured with a single shot laser at 1.06 μm. The coatings—two types of high reflecting mirror and three types of antireflection coating—have been electron gun deposited on glass substrates of 2.54-cm (1-in.) diam. Damage was induced by irradiation of 12-nsec pulses from an unstable resonator-type Nd:YAG laser with a Gaussian far-field intensity profile. The thresholds were calculated from the diameter of damage craters and pulse energy. The highest damage thresholds were 60 J/cm2 (5 GW/cm2) for maximum reflectors and 9 J/cm2 (750 MW/cm2) for antireflection coatings, respectively.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegnan, H. Y. Miller, “Unstable Optical Resonator Loss Calculations Using the Prony Method,” Appl. Opt. 9, 2729 (1970).
    [CrossRef]
  2. W. F. Krupke, W. R. Sooy, “Properties of an Unstable Confocal Resonator CO2 Laser System,” IEEE J. Quantum Electron. QE-5, 575 (1969).
    [CrossRef]
  3. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 19xx).
  4. B. E. Newnam, Thesis, U. Southern California (1973).

1970

1969

W. F. Krupke, W. R. Sooy, “Properties of an Unstable Confocal Resonator CO2 Laser System,” IEEE J. Quantum Electron. QE-5, 575 (1969).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 19xx).

Krupke, W. F.

W. F. Krupke, W. R. Sooy, “Properties of an Unstable Confocal Resonator CO2 Laser System,” IEEE J. Quantum Electron. QE-5, 575 (1969).
[CrossRef]

Miller, H. Y.

Newnam, B. E.

B. E. Newnam, Thesis, U. Southern California (1973).

Siegnan, A. E.

Sooy, W. R.

W. F. Krupke, W. R. Sooy, “Properties of an Unstable Confocal Resonator CO2 Laser System,” IEEE J. Quantum Electron. QE-5, 575 (1969).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 19xx).

Appl. Opt.

IEEE J. Quantum Electron.

W. F. Krupke, W. R. Sooy, “Properties of an Unstable Confocal Resonator CO2 Laser System,” IEEE J. Quantum Electron. QE-5, 575 (1969).
[CrossRef]

Other

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 19xx).

B. E. Newnam, Thesis, U. Southern California (1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Stable and unstable resonator.

Fig. 2
Fig. 2

Eigenvalue magnitudes and phases.1

Fig. 3
Fig. 3

Intensity distributions.

Fig. 4
Fig. 4

Damage threshold ED and destruction radius rD: E0 is the peak energy, and ρ is the beam radius (1/e).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

δ = 1 - 1 m 2 ,
δ n = 1 - γ n 2 .
N eq = m - 1 2 m 2 ( B / 2 ) 2 L · λ ,
I ( ψ ) ~ [ J 1 ( Z 1 ) Z 2 - 1 m 2 J 1 ( Z 1 ) Z 1 ] ,
Z 1 = π · ψ λ · B , Z 2 = π · ψ λ · m · B ,
E ( r ) = E 0 · exp [ - ( r / ρ ) 2 ] ,
E D ( r = r D ) = E 0 · exp [ - ( r D / ρ ) 2 ] .
E D ( r = r D n ) = T n · E 0 · exp [ - ( r D n / ρ ) 2 ] .
I 0 = r = 0 ϕ = 0 2 π E 0 · exp [ - ( r / ρ ) 2 ] r d r d ϕ .
P 0 = I 0 π 3 / 2 τ · ρ 2 ,

Metrics