Abstract

A number of instruments use rasters generated by deflecting one or more laser beams with some scanning device. Optics for shaping and manipulating these beams are described, with particular attention to the dual role of each element in terms of the (instantaneous) beam and the scanned pattern. A solution is shown to the problem of chromaticity in diffraction scanners. Specific examples are drawn from the scanning laser ophthalmoscope, a scanning instrument using two lasers with real-time TV display.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Webb, G. W. Hughes, O. Pomerantzeff, “Flying Spot TV Ophthalmoscope,” Appl. Opt. 19, 2991 (1980); R. H. Webb, G. W. Hughes, “Scanning Laser Ophthalmoscope,” IEEE Trans. Biomed. Eng. BME-28, 488 (1981).
    [CrossRef] [PubMed]
  2. J. D. Zook, “Light Beam Deflector Performance: a Comparative Analysis,” Appl. Opt. 13, 875 (1974); L. Beiser, “The Scanner Decision: Evaluating the Alternatives,” Lasers Appl. 61 (1983) (a good review with complete references).
    [CrossRef] [PubMed]
  3. P. J. Brosens, “Dynamic Mirror Distortions in Optical Scanning,” Appl. Opt. 11, 2987 (1972); D. P. Jablonowski, J. Raamot, “Galvanometer Deflection: a Precision High-speed System,” Appl. Opt. 15, 1437 (1976).
    [CrossRef] [PubMed]
  4. T. Matsuda, F. Abe, H. Takahashi, “Laser Printer Scanning System with a Parabolic Mirror,” Appl. Opt. 17, 878 (1978).
    [CrossRef] [PubMed]
  5. A. Korpel, R. Adler, P. Desmares, W. Watson, “A Television Display Using Acoustic Deflection and Modulation of Coherent Light,” Appl. Opt. 5, 1667 (1966); I. Gorog, J. D. Knox, Goedertier, “A Television-Rate Laser Scanner. I. General Considerations,” RCA Rev. 33, 623 (1972); L. D. Dickson, “Optical Considerations for an Acoustooptic Deflector,” Appl. Opt. 11, 2196 (1972); L. Bademian, “Acousto-optic Laser Recording,” Opt. Eng. 20, 143 (1981).
    [CrossRef] [PubMed]
  6. M. G. Gazalet, C. Bruneel, R. Torguet, G. Thomin, B. Nongaillard, “Bichromatic Nondispersive Acoustooptic Deflector,” Appl. Opt. 23, 2192 (1984).
    [CrossRef] [PubMed]
  7. W. H. Watson, A. Korpel, “Equalization of Acoustooptic Deflection Cells in a Laser Color TV System,” Appl. Opt. 9, 1176 (1970).
    [CrossRef] [PubMed]

1984 (1)

1980 (1)

1978 (1)

1974 (1)

1972 (1)

1970 (1)

1966 (1)

Abe, F.

Adler, R.

Brosens, P. J.

Bruneel, C.

Desmares, P.

Gazalet, M. G.

Hughes, G. W.

Korpel, A.

Matsuda, T.

Nongaillard, B.

Pomerantzeff, O.

Takahashi, H.

Thomin, G.

Torguet, R.

Watson, W.

Watson, W. H.

Webb, R. H.

Zook, J. D.

Appl. Opt. (7)

R. H. Webb, G. W. Hughes, O. Pomerantzeff, “Flying Spot TV Ophthalmoscope,” Appl. Opt. 19, 2991 (1980); R. H. Webb, G. W. Hughes, “Scanning Laser Ophthalmoscope,” IEEE Trans. Biomed. Eng. BME-28, 488 (1981).
[CrossRef] [PubMed]

J. D. Zook, “Light Beam Deflector Performance: a Comparative Analysis,” Appl. Opt. 13, 875 (1974); L. Beiser, “The Scanner Decision: Evaluating the Alternatives,” Lasers Appl. 61 (1983) (a good review with complete references).
[CrossRef] [PubMed]

P. J. Brosens, “Dynamic Mirror Distortions in Optical Scanning,” Appl. Opt. 11, 2987 (1972); D. P. Jablonowski, J. Raamot, “Galvanometer Deflection: a Precision High-speed System,” Appl. Opt. 15, 1437 (1976).
[CrossRef] [PubMed]

T. Matsuda, F. Abe, H. Takahashi, “Laser Printer Scanning System with a Parabolic Mirror,” Appl. Opt. 17, 878 (1978).
[CrossRef] [PubMed]

A. Korpel, R. Adler, P. Desmares, W. Watson, “A Television Display Using Acoustic Deflection and Modulation of Coherent Light,” Appl. Opt. 5, 1667 (1966); I. Gorog, J. D. Knox, Goedertier, “A Television-Rate Laser Scanner. I. General Considerations,” RCA Rev. 33, 623 (1972); L. D. Dickson, “Optical Considerations for an Acoustooptic Deflector,” Appl. Opt. 11, 2196 (1972); L. Bademian, “Acousto-optic Laser Recording,” Opt. Eng. 20, 143 (1981).
[CrossRef] [PubMed]

M. G. Gazalet, C. Bruneel, R. Torguet, G. Thomin, B. Nongaillard, “Bichromatic Nondispersive Acoustooptic Deflector,” Appl. Opt. 23, 2192 (1984).
[CrossRef] [PubMed]

W. H. Watson, A. Korpel, “Equalization of Acoustooptic Deflection Cells in a Laser Color TV System,” Appl. Opt. 9, 1176 (1970).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scanned system analyzed in terms of a scanner of aperture B residing in plane S and angle β. A lens creates raster plane R, where the beam forms a spot of size b, and the scan forms a raster of size h. Beam-shaping optics are shown between the laser and scanner.

Fig. 2
Fig. 2

Rotating polygon deflector.

Fig. 3
Fig. 3

Anomorphic (cylindrical) beam expanders necessary for the awkward (42- × 2-mm) aperture of a particular acoustooptic deflector.

Fig. 4
Fig. 4

AOD of Fig. 3 deflects the beam in one direction (the horizontal for a TV display), and the orthogonal deflection is effected by a galvanometer-mounted mirror G. Here L1′ is crossed with L1 so that L3 can collimate a symmetric beam and decollimate the scan to a conjugate scanner plane S1 where the galvanometer is located.

Fig. 5
Fig. 5

Our realization of Fig. 4 uses cylindrical mirrors L1 and off-axis parabolic mirrors L2 and L2′.

Fig. 6
Fig. 6

AOD is linearly chromatic. Separate elements for each color collimate the different scans and focus the beams to the same raster plane with the same raster size.

Fig. 7
Fig. 7

Realization of Fig. 6 utilizing a dichroic beam splitter and combiner (not quite at the same angle) and separate paraboloids for each color. Prism P1 makes a second-order correction allowing the AOD to work at Bragg angle for both colors. P2 is unnecessary but restores the beam to its previous direction.

Metrics