Abstract

The TiO2/Ag/TiO2 multilayer configuration forms an optically transparent IR reflective coating. In such multilayer films the dielectric layers are generally deposited by rf sputtering. The deposition of TiO2 films from liquid polymer solutions employed in this work gives substantial advantages over the sputtering method in both cost and adaptability of the coating to various substrate shapes. In this method, however, the optical properties, e.g., refractive index, of the polymer-deposited films, are significantly dependent on certain processing parameters. This manuscript discusses the formation of transparent IR reflective films on fused silica and soda-lime glasses. Particular attention is given to providing spectral transmission characteristics that result in the maximum energy savings in incandescent lighting use, since the tungsten filament radiates over 80% of its energy in the infrared range and recovery of this energy would represent substantial energy conservation. The initial experiments with coated light bulbs showed an increase of efficiency as high as 30–40%.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. O. Hoffman, U.S. Patent1,425,967 (1922).
  2. J. L. Vossen, F. S. Poliniak, “The Properties of Very Thin RF Sputtered Transparent Conducting Films of SnO2:Sb and Ln2O3:Sn,” Thin Solid Films 13, 281 (1972).
    [Crossref]
  3. R. Groth, F. Kauer, “Thermal Insulation of Sodium Lamps,” Philips Tech. Rev. 26, 105 (1965).
  4. J. Holland, G. Siddal, “Heat-Reflecting Windows using Gold and Bismuth Oxide Films,” Brit. J. Appl. Phys. 9, 359 (1958).
    [Crossref]
  5. J. C. C. Fan et al., “Transparent Heat-Mirror Films of TiO2/Ag/TiO2 for Solar Energy Collection and Radiation Insulation,” Appl. Phys. Lett. 25, 693 (1974).
    [Crossref]
  6. L. Thorington et al., U.S. Patent4,160,929 (1979).
  7. J. Brett et al., “Radiation Conserving Incandescent Lamps,” IES Paper No. 15 (1979).
  8. B. E. Yoldas, U.S. Patent4,293,593 (1981).
  9. B. E. Yoldas, U.S. Patent, 4,361,598 (1983).
  10. B. E. Yoldas, “Diffusion of Dopants from Optical Coatings and Single Step Formation of Antireflective Coating and P-N Junction in Photovoltaic Cells,” J. Electrochem. Soc. 127, 2481 [1980].
    [Crossref]
  11. B. E. Yoldas, T. W. O’Keeffe, “Antireflective Coatings Applied from Metal-Organic Derived Liquid Precursors,” Appl. Opt. 18, 3133 (1979).
    [Crossref] [PubMed]
  12. J. E. Shelby, M. C. Nichols, D. K. Smith, J. Vitko, “The Effect of Thermal History on the Structure of Chemically and Vapor Deposited Silver Films on Glass,” Sandia Laboratory Energy Report, SAND 79-8825.
  13. B. O. Seraphin, Ed., “Solar Energy Conversion,” in Tables in Applied Physics, Vol. 31 (Springer-Verlag, New York, 1979).
    [Crossref]
  14. B. E. Yoldas, “Deposition and Properties of Optical Oxide Coatings from Polymerized Solutions,” Appl. Opt. 21, 2960 (1982).
    [Crossref] [PubMed]

1982 (1)

1980 (1)

B. E. Yoldas, “Diffusion of Dopants from Optical Coatings and Single Step Formation of Antireflective Coating and P-N Junction in Photovoltaic Cells,” J. Electrochem. Soc. 127, 2481 [1980].
[Crossref]

1979 (1)

1974 (1)

J. C. C. Fan et al., “Transparent Heat-Mirror Films of TiO2/Ag/TiO2 for Solar Energy Collection and Radiation Insulation,” Appl. Phys. Lett. 25, 693 (1974).
[Crossref]

1972 (1)

J. L. Vossen, F. S. Poliniak, “The Properties of Very Thin RF Sputtered Transparent Conducting Films of SnO2:Sb and Ln2O3:Sn,” Thin Solid Films 13, 281 (1972).
[Crossref]

1965 (1)

R. Groth, F. Kauer, “Thermal Insulation of Sodium Lamps,” Philips Tech. Rev. 26, 105 (1965).

1958 (1)

J. Holland, G. Siddal, “Heat-Reflecting Windows using Gold and Bismuth Oxide Films,” Brit. J. Appl. Phys. 9, 359 (1958).
[Crossref]

Brett, J.

J. Brett et al., “Radiation Conserving Incandescent Lamps,” IES Paper No. 15 (1979).

Fan, J. C. C.

J. C. C. Fan et al., “Transparent Heat-Mirror Films of TiO2/Ag/TiO2 for Solar Energy Collection and Radiation Insulation,” Appl. Phys. Lett. 25, 693 (1974).
[Crossref]

Groth, R.

R. Groth, F. Kauer, “Thermal Insulation of Sodium Lamps,” Philips Tech. Rev. 26, 105 (1965).

Hoffman, S. O.

S. O. Hoffman, U.S. Patent1,425,967 (1922).

Holland, J.

J. Holland, G. Siddal, “Heat-Reflecting Windows using Gold and Bismuth Oxide Films,” Brit. J. Appl. Phys. 9, 359 (1958).
[Crossref]

Kauer, F.

R. Groth, F. Kauer, “Thermal Insulation of Sodium Lamps,” Philips Tech. Rev. 26, 105 (1965).

Nichols, M. C.

J. E. Shelby, M. C. Nichols, D. K. Smith, J. Vitko, “The Effect of Thermal History on the Structure of Chemically and Vapor Deposited Silver Films on Glass,” Sandia Laboratory Energy Report, SAND 79-8825.

O’Keeffe, T. W.

Poliniak, F. S.

J. L. Vossen, F. S. Poliniak, “The Properties of Very Thin RF Sputtered Transparent Conducting Films of SnO2:Sb and Ln2O3:Sn,” Thin Solid Films 13, 281 (1972).
[Crossref]

Shelby, J. E.

J. E. Shelby, M. C. Nichols, D. K. Smith, J. Vitko, “The Effect of Thermal History on the Structure of Chemically and Vapor Deposited Silver Films on Glass,” Sandia Laboratory Energy Report, SAND 79-8825.

Siddal, G.

J. Holland, G. Siddal, “Heat-Reflecting Windows using Gold and Bismuth Oxide Films,” Brit. J. Appl. Phys. 9, 359 (1958).
[Crossref]

Smith, D. K.

J. E. Shelby, M. C. Nichols, D. K. Smith, J. Vitko, “The Effect of Thermal History on the Structure of Chemically and Vapor Deposited Silver Films on Glass,” Sandia Laboratory Energy Report, SAND 79-8825.

Thorington, L.

L. Thorington et al., U.S. Patent4,160,929 (1979).

Vitko, J.

J. E. Shelby, M. C. Nichols, D. K. Smith, J. Vitko, “The Effect of Thermal History on the Structure of Chemically and Vapor Deposited Silver Films on Glass,” Sandia Laboratory Energy Report, SAND 79-8825.

Vossen, J. L.

J. L. Vossen, F. S. Poliniak, “The Properties of Very Thin RF Sputtered Transparent Conducting Films of SnO2:Sb and Ln2O3:Sn,” Thin Solid Films 13, 281 (1972).
[Crossref]

Yoldas, B. E.

B. E. Yoldas, “Deposition and Properties of Optical Oxide Coatings from Polymerized Solutions,” Appl. Opt. 21, 2960 (1982).
[Crossref] [PubMed]

B. E. Yoldas, “Diffusion of Dopants from Optical Coatings and Single Step Formation of Antireflective Coating and P-N Junction in Photovoltaic Cells,” J. Electrochem. Soc. 127, 2481 [1980].
[Crossref]

B. E. Yoldas, T. W. O’Keeffe, “Antireflective Coatings Applied from Metal-Organic Derived Liquid Precursors,” Appl. Opt. 18, 3133 (1979).
[Crossref] [PubMed]

B. E. Yoldas, U.S. Patent4,293,593 (1981).

B. E. Yoldas, U.S. Patent, 4,361,598 (1983).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. C. C. Fan et al., “Transparent Heat-Mirror Films of TiO2/Ag/TiO2 for Solar Energy Collection and Radiation Insulation,” Appl. Phys. Lett. 25, 693 (1974).
[Crossref]

Brit. J. Appl. Phys. (1)

J. Holland, G. Siddal, “Heat-Reflecting Windows using Gold and Bismuth Oxide Films,” Brit. J. Appl. Phys. 9, 359 (1958).
[Crossref]

J. Electrochem. Soc. (1)

B. E. Yoldas, “Diffusion of Dopants from Optical Coatings and Single Step Formation of Antireflective Coating and P-N Junction in Photovoltaic Cells,” J. Electrochem. Soc. 127, 2481 [1980].
[Crossref]

Philips Tech. Rev. (1)

R. Groth, F. Kauer, “Thermal Insulation of Sodium Lamps,” Philips Tech. Rev. 26, 105 (1965).

Thin Solid Films (1)

J. L. Vossen, F. S. Poliniak, “The Properties of Very Thin RF Sputtered Transparent Conducting Films of SnO2:Sb and Ln2O3:Sn,” Thin Solid Films 13, 281 (1972).
[Crossref]

Other (7)

S. O. Hoffman, U.S. Patent1,425,967 (1922).

L. Thorington et al., U.S. Patent4,160,929 (1979).

J. Brett et al., “Radiation Conserving Incandescent Lamps,” IES Paper No. 15 (1979).

B. E. Yoldas, U.S. Patent4,293,593 (1981).

B. E. Yoldas, U.S. Patent, 4,361,598 (1983).

J. E. Shelby, M. C. Nichols, D. K. Smith, J. Vitko, “The Effect of Thermal History on the Structure of Chemically and Vapor Deposited Silver Films on Glass,” Sandia Laboratory Energy Report, SAND 79-8825.

B. O. Seraphin, Ed., “Solar Energy Conversion,” in Tables in Applied Physics, Vol. 31 (Springer-Verlag, New York, 1979).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Spectral energy distribution of tungsten filament radiation at 2800 K.

Fig. 2
Fig. 2

Spectral transmission and reflectivity of a TiO2/Ag/TiO2 film deposited on soda-lime glass when computer optimized for maximum incandescent lamp efficiency, where the index of the TiO2 layers is 0.9 of that of rutile, and the readsorption factor of the filament is 0.5.

Fig. 3
Fig. 3

Optimum lamp efficiency requirements for the thickness of each layer in the TiO2 (I)/Ag (II)/TiO2 (III) configuration as the refractive index deviates from theoretical values, when the coating is deposited on soda-lime glass, and the filament readsorption is 0.5.

Fig. 4
Fig. 4

Schematic representation of the coating method which uses an inserted tube to fill and evacuate the coating solution from the bulb.

Fig. 5
Fig. 5

Cross section of the coated spherical light bulb.

Fig. 6
Fig. 6

Differential evacuation rate vs position θ required to maintain constant vertical motion of the coating solution in a 3.9-cm diam spherical bulb when the total evacuation time varies between 10 and 40 sec.

Fig. 7
Fig. 7

Spectral transmission T and reflectivity R of a TiO2 (400 Å)/Ag (200 Å)/TiO2 (400 Å) film on quartz. (TQ and RQ are the transmission and reflectivity of the uncoated substrate.)

Fig. 8
Fig. 8

Spectral transmission and reflectivity of A, TiO2 (400 Å)/Ag (200 Å)/TiO2(400 Å) vs B, TiO2 (460 Å)/Ag (200 Å)/TiO2 (460 Å) layers deposited on soda-lime glass. Note the significant difference in the IR reflectivity due to a 60-Å increase in the TiO2 thickness (TG and RG are the transmission and reflectivity of uncoated soda-lime glass).

Fig. 9
Fig. 9

Power requirements for heating a tungsten filament to a given temperature (expressed in resistance) in uncoated and coated bulbs in vacuum.

Tables (2)

Tables Icon

Table I Ideal Thicknesses and Tolerances for Each Layer of TiO2/Ag/TiO2 Coating

Tables Icon

Table II Filament Temperature Inside Coated and Uncoated Bulb

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ V = π ρ 2 Δ h = π r 2 sin 2 θ · Δ h .
Δ V Δ t = π r 2 Δ h Δ t sin 2 θ ,
Δ h Δ t = h t 0 = 2 r t 0 ,
Δ V Δ t = 2 π r 3 t 0 sin 2 θ
Δ V Δ t = 2 π r t 0 ( h - r ) 2 .
Rate θ = k 1 · sin 2 θ = k 2 ( h - r ) 2 ,
Rate = 2 π r 3 t 0 · sin 3 θ = 2 π t 0 ( h - r ) 3 .
R m = ( Δ V Δ t ) max = 2 π r 3 t 0 .

Metrics