Abstract

The transmittance of an on-blaze plane-grating monochromator has been calculated as a function of wavelength for different spectral orders. The calculations show that higher, undesirable orders can be suppressed by a judicious selection of grating blaze angle and coating material. However, for intense sources, such as a storage ring operating at high power and current, higher-order suppression due to blaze angle and coating material may have to be augmented by using transmitting filters or spectrally selective detectors or both.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, Nucl. Instrum. Methods 195, 141 (1982).
    [CrossRef]
  2. G. Materlik, V. O. Kostroun, Rev., Sci. Instrum. 51, 86 (1980).
    [CrossRef]
  3. J. Barth, F. Gerken, C. Kunz, J. Schmidt-May, Nucl. Instrum. Methods 208, 307 (1983).
    [CrossRef]
  4. G. K. Green, Brookhaven National Laboratory Report BNL 50522 (1976).
  5. R. Petit, Ed., Electromagnetic Theory of Gratings (Springer, Berlin, 1980).
    [CrossRef]
  6. M. V. Zombeck, G. K. Austin, D. T. Torgerson, Smithsonian Astrophysical Observatory Report SAO-AXAF-80-003, Appendix B, Table B1, Cambridge, Mass (1980).
  7. H. J. Hagemann, W. Gudat, C. Kunz, DESY Report SR-74/7, Hamburg (1974).
  8. L. R. Canfield, G. Hass, W. R. Hunter, J. Phys. 25, 124 (1964).
    [CrossRef]
  9. M. L. Theye, Phys. Rev. B 2, 3060 (1970).
    [CrossRef]
  10. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, Low Energy X-ray Diagnostics—1981, AIP Conf. Proc.75, 340 (1981), Eds. D. T. Attwood, B. L. Henke, (American Institute of Physics, New York, 1981).
  11. W. R. Hunter, D. W. Angel, G. Hass, J. Opt. Soc. Am. 69, 1695 (1979).
    [CrossRef]
  12. J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, in Optical Properties of Metals, Part 1: The Transition Metals, Physics Data (Fachinformations-zentrum, Karlsruhe, 1981).
  13. J. T. Cox, G. Hass, J. B. Ramsey, W. R. Hunter, J. Opt. Soc. Am. 63, 435 (1973).
    [CrossRef]
  14. W. R. Hunter, Phys. Thin Films 7, 43 (1973).

1983

J. Barth, F. Gerken, C. Kunz, J. Schmidt-May, Nucl. Instrum. Methods 208, 307 (1983).
[CrossRef]

1982

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, Nucl. Instrum. Methods 195, 141 (1982).
[CrossRef]

1980

G. Materlik, V. O. Kostroun, Rev., Sci. Instrum. 51, 86 (1980).
[CrossRef]

1979

1973

1970

M. L. Theye, Phys. Rev. B 2, 3060 (1970).
[CrossRef]

1964

L. R. Canfield, G. Hass, W. R. Hunter, J. Phys. 25, 124 (1964).
[CrossRef]

Angel, D. W.

Austin, G. K.

M. V. Zombeck, G. K. Austin, D. T. Torgerson, Smithsonian Astrophysical Observatory Report SAO-AXAF-80-003, Appendix B, Table B1, Cambridge, Mass (1980).

Barth, J.

J. Barth, F. Gerken, C. Kunz, J. Schmidt-May, Nucl. Instrum. Methods 208, 307 (1983).
[CrossRef]

Canfield, L. R.

L. R. Canfield, G. Hass, W. R. Hunter, J. Phys. 25, 124 (1964).
[CrossRef]

Cox, J. T.

Fujikawa, B. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, Low Energy X-ray Diagnostics—1981, AIP Conf. Proc.75, 340 (1981), Eds. D. T. Attwood, B. L. Henke, (American Institute of Physics, New York, 1981).

Gerken, F.

J. Barth, F. Gerken, C. Kunz, J. Schmidt-May, Nucl. Instrum. Methods 208, 307 (1983).
[CrossRef]

Green, G. K.

G. K. Green, Brookhaven National Laboratory Report BNL 50522 (1976).

Gudat, W.

H. J. Hagemann, W. Gudat, C. Kunz, DESY Report SR-74/7, Hamburg (1974).

Hagemann, H. J.

H. J. Hagemann, W. Gudat, C. Kunz, DESY Report SR-74/7, Hamburg (1974).

Hass, G.

Henke, B. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, Low Energy X-ray Diagnostics—1981, AIP Conf. Proc.75, 340 (1981), Eds. D. T. Attwood, B. L. Henke, (American Institute of Physics, New York, 1981).

Hunter, W. R.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, Nucl. Instrum. Methods 195, 141 (1982).
[CrossRef]

W. R. Hunter, D. W. Angel, G. Hass, J. Opt. Soc. Am. 69, 1695 (1979).
[CrossRef]

J. T. Cox, G. Hass, J. B. Ramsey, W. R. Hunter, J. Opt. Soc. Am. 63, 435 (1973).
[CrossRef]

W. R. Hunter, Phys. Thin Films 7, 43 (1973).

L. R. Canfield, G. Hass, W. R. Hunter, J. Phys. 25, 124 (1964).
[CrossRef]

Kabler, M. N.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, Nucl. Instrum. Methods 195, 141 (1982).
[CrossRef]

Kirkland, J. P.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, Nucl. Instrum. Methods 195, 141 (1982).
[CrossRef]

Koch, E. E.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, in Optical Properties of Metals, Part 1: The Transition Metals, Physics Data (Fachinformations-zentrum, Karlsruhe, 1981).

Kostroun, V. O.

G. Materlik, V. O. Kostroun, Rev., Sci. Instrum. 51, 86 (1980).
[CrossRef]

Krafka, C.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, in Optical Properties of Metals, Part 1: The Transition Metals, Physics Data (Fachinformations-zentrum, Karlsruhe, 1981).

Kunz, C.

J. Barth, F. Gerken, C. Kunz, J. Schmidt-May, Nucl. Instrum. Methods 208, 307 (1983).
[CrossRef]

H. J. Hagemann, W. Gudat, C. Kunz, DESY Report SR-74/7, Hamburg (1974).

Lee, P.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, Low Energy X-ray Diagnostics—1981, AIP Conf. Proc.75, 340 (1981), Eds. D. T. Attwood, B. L. Henke, (American Institute of Physics, New York, 1981).

Lynch, D. W.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, in Optical Properties of Metals, Part 1: The Transition Metals, Physics Data (Fachinformations-zentrum, Karlsruhe, 1981).

Materlik, G.

G. Materlik, V. O. Kostroun, Rev., Sci. Instrum. 51, 86 (1980).
[CrossRef]

Ramsey, J. B.

Rife, J. C.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, Nucl. Instrum. Methods 195, 141 (1982).
[CrossRef]

Schmidt-May, J.

J. Barth, F. Gerken, C. Kunz, J. Schmidt-May, Nucl. Instrum. Methods 208, 307 (1983).
[CrossRef]

Shimabukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, Low Energy X-ray Diagnostics—1981, AIP Conf. Proc.75, 340 (1981), Eds. D. T. Attwood, B. L. Henke, (American Institute of Physics, New York, 1981).

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, Low Energy X-ray Diagnostics—1981, AIP Conf. Proc.75, 340 (1981), Eds. D. T. Attwood, B. L. Henke, (American Institute of Physics, New York, 1981).

Theye, M. L.

M. L. Theye, Phys. Rev. B 2, 3060 (1970).
[CrossRef]

Torgerson, D. T.

M. V. Zombeck, G. K. Austin, D. T. Torgerson, Smithsonian Astrophysical Observatory Report SAO-AXAF-80-003, Appendix B, Table B1, Cambridge, Mass (1980).

Weaver, J. H.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, in Optical Properties of Metals, Part 1: The Transition Metals, Physics Data (Fachinformations-zentrum, Karlsruhe, 1981).

Williams, R. T.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, Nucl. Instrum. Methods 195, 141 (1982).
[CrossRef]

Zombeck, M. V.

M. V. Zombeck, G. K. Austin, D. T. Torgerson, Smithsonian Astrophysical Observatory Report SAO-AXAF-80-003, Appendix B, Table B1, Cambridge, Mass (1980).

J. Opt. Soc. Am.

J. Phys.

L. R. Canfield, G. Hass, W. R. Hunter, J. Phys. 25, 124 (1964).
[CrossRef]

Nucl. Instrum. Methods

J. Barth, F. Gerken, C. Kunz, J. Schmidt-May, Nucl. Instrum. Methods 208, 307 (1983).
[CrossRef]

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, Nucl. Instrum. Methods 195, 141 (1982).
[CrossRef]

Phys. Rev. B

M. L. Theye, Phys. Rev. B 2, 3060 (1970).
[CrossRef]

Phys. Thin Films

W. R. Hunter, Phys. Thin Films 7, 43 (1973).

Rev., Sci. Instrum.

G. Materlik, V. O. Kostroun, Rev., Sci. Instrum. 51, 86 (1980).
[CrossRef]

Other

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, Low Energy X-ray Diagnostics—1981, AIP Conf. Proc.75, 340 (1981), Eds. D. T. Attwood, B. L. Henke, (American Institute of Physics, New York, 1981).

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, in Optical Properties of Metals, Part 1: The Transition Metals, Physics Data (Fachinformations-zentrum, Karlsruhe, 1981).

G. K. Green, Brookhaven National Laboratory Report BNL 50522 (1976).

R. Petit, Ed., Electromagnetic Theory of Gratings (Springer, Berlin, 1980).
[CrossRef]

M. V. Zombeck, G. K. Austin, D. T. Torgerson, Smithsonian Astrophysical Observatory Report SAO-AXAF-80-003, Appendix B, Table B1, Cambridge, Mass (1980).

H. J. Hagemann, W. Gudat, C. Kunz, DESY Report SR-74/7, Hamburg (1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the double-grating scanning monochromator.

Fig. 2
Fig. 2

Illustration of the blaze condition for a diffraction grating and how it is analogous to Bragg diffraction by a crystal. Ng and Nf are the grating and facet normals, and α and β are the angles of incidence and diffraction, respectively. INC represents the incident beam. INC and the inside first order, i.e., that closest to Ng, make equal angles with Nf. They also make equal glancing angles, σ, with the pseudo-Bragg planes.

Fig. 3
Fig. 3

Calculated reflectance-vs-wavelength of Ni, Au, Pt, and Os at a 2° glancing angle from 10 to 2400 Å.

Fig. 4
Fig. 4

Reflectance-vs-glancing angle for n = 0.9 and different values of k. The curve for k = 0.5 has no point of inflection so the n,k pair 0.9–i0.5 is not in the critical angle regime.

Fig. 5
Fig. 5

Wavelength as a function of glancing angle for two blaze angles, 2° and 3°, and for first (—) and second (- - -) orders. The data points show the wavelength at which the critical angle n = cosσ occurs for the coating materials indicated.

Fig. 6
Fig. 6

Calculated monochromator transmittances in first and second orders for coatings of Ni, Au, Pt, and Os on both the grating–mirror pair and the paraboloidal mirrors. In each case, the results are shown from 15 to 300 Å for the 24,000-g/cm grating and from 60 to 1200 Å for the 6000-g/cm grating. The first order is the solid line. The second-order line is broken by two short dashes. The wavelength scale factor is correct for the first order. The second-order spectral contamination is at a wavelength one-half the wavelength of first order.

Fig. 7
Fig. 7

Calculated monochromator transmittances in first and second orders for the grating–mirror pair coated with aged Al (Al + 30 Å of Al2O3) and paraboloidal mirrors coated with Au. The results are shown from 15 to 300 Å for the 24,000-g/cm grating and from 60 to 1200 Å for the 6000-g/cm grating. The first order is the solid line. The second-order line is broken by two short dashes. The wavelength scale factor is correct for the first order. The second-order spectral contamination is at a wavelength one-half the wavelength of the first order.

Fig. 8
Fig. 8

Calculated monochromator transmittances for first through fifth orders. Paraboloidal mirrors are coated with Ni. For the short-wavelength range (left), the 24,000-g/cm grating coatings are Au, and for the long-wavelength range (right), the 6000-g/cm grating coatings are aged Si (Si + 30 Å of SiO2). The first order is designated by solid lines. The higher orders are distinguished by the number of short dashes, i.e., two for second order, three for third, etc. The fifth order is designated by the curve with the short cross-marks. The wavelength scale factor is correct for the first order. The nth-order spectral contamination is at a wavelength 1/n times that of first order.

Fig. 9
Fig. 9

Calculated throughput of the monochromator using the coating schemes, and other designations, of Fig. 8.

Fig. 10
Fig. 10

Calculated monochromator transmittances as affected by a thin Al film filter. The coating schemes, and other designations, are the same as Fig. 8. The short dashed lines show the transmittances without the Al filter, except for the long-wavelength range (right) where the lines with the long dashes show the original second-order transmittance.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n G λ = 2 sin θ B sin σ ,
F = ( w / h ) [ sin 2 ( σ - θ B ) / sin ( σ + θ B ) ] ,
F = ( w / h ) sin ( σ - θ B ) ,
λ c ( 1 / C ) ( 1 - cos σ c ) 0.5 .

Metrics