Abstract

A Fourier transform spectrometer with no mechanical moving parts is described. The interferogram is generated spatially by a triangle common-path interferometer and is detected by a self-scanning photodiode array. The spectrum is reconstructed by fast Fourier transform in a microcomputer system. Since no moving part is used and a common-path interferometer is employed for simple, stable, and easy alignment, this spectrometer may be built in a relatively small size and with moderate cost. The self-scanning photodiode array as a multichannel detector may lead this spectrometer to the application to time-resolved spectroscopy. The optical throughput is much larger than that of a multichannel dispersion-type spectrometer, because in the system neither a slit nor an aperture is necessary. The emission spectra of a low pressure mercury lamp and a LED are shown to demonstrate the system performance.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Stroke, A. T. Funkhouser, Phys. Lett. 16, 272 (1965).
    [CrossRef]
  2. K. Yoshihara, A. Kitade, Jpn. J. Appl. Phys. 6, 116 (1967).
    [CrossRef]
  3. K. Kamiya, K. Yoshihara, K. Okada, Jpn. J. Appl. Phys. 7, 1129 (1968).
    [CrossRef]
  4. K. Yoshihara, K. Nakashima, M. Higuchi, Jpn. J. Appl. Phys. 15, 1169 (1976).
    [CrossRef]
  5. H. J. Caulfield, “Spectroscopy,” in Handbook of Optical Holography, H. J. Caulfield, Eds. (Academic, New York, 1979); and “Holographic Spectroscopy,” in Advances in Holography, Vol. 2, N. Farhat, Eds. (Marcel Dekker, New York, 1976).
  6. T. Tsuno, R. Takahashi, in Proceedings, Ninth International Congress, High-Speed Photography, W. G. Hyzer, W. G. Chace, Eds. (Society of Motion Picture and Television Engineers, New York, 1970), p. 21.
  7. G. Vanasse, H. Sakai, “Fourier Spectroscopy,” in Progress in Optics, Vol. 6, E. Wolf, Eds. (North-Holland, New York, 1967), Secs. 4 and 8.1.
  8. MN8090 Data Sheet (Matsushita Electronics Corp., Oct.1981).
  9. L. Mertz, Transformations in Optics (Wiley, New York, 1965), pp. 27–33.
  10. A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1977), Chap. 7.3.
  11. S. Kawata, K. Minami, S. Minami, Appl. Opt. 22, 3593 (1983).
    [CrossRef] [PubMed]
  12. Y. Talmi, R. W. Simpson, Appl. Opt. 19, 1401 (1980).
    [CrossRef] [PubMed]

1983 (1)

1980 (1)

1976 (1)

K. Yoshihara, K. Nakashima, M. Higuchi, Jpn. J. Appl. Phys. 15, 1169 (1976).
[CrossRef]

1968 (1)

K. Kamiya, K. Yoshihara, K. Okada, Jpn. J. Appl. Phys. 7, 1129 (1968).
[CrossRef]

1967 (1)

K. Yoshihara, A. Kitade, Jpn. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

1965 (1)

G. W. Stroke, A. T. Funkhouser, Phys. Lett. 16, 272 (1965).
[CrossRef]

Caulfield, H. J.

H. J. Caulfield, “Spectroscopy,” in Handbook of Optical Holography, H. J. Caulfield, Eds. (Academic, New York, 1979); and “Holographic Spectroscopy,” in Advances in Holography, Vol. 2, N. Farhat, Eds. (Marcel Dekker, New York, 1976).

Funkhouser, A. T.

G. W. Stroke, A. T. Funkhouser, Phys. Lett. 16, 272 (1965).
[CrossRef]

Higuchi, M.

K. Yoshihara, K. Nakashima, M. Higuchi, Jpn. J. Appl. Phys. 15, 1169 (1976).
[CrossRef]

Kamiya, K.

K. Kamiya, K. Yoshihara, K. Okada, Jpn. J. Appl. Phys. 7, 1129 (1968).
[CrossRef]

Kawata, S.

Kitade, A.

K. Yoshihara, A. Kitade, Jpn. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

Mertz, L.

L. Mertz, Transformations in Optics (Wiley, New York, 1965), pp. 27–33.

Minami, K.

Minami, S.

Nakashima, K.

K. Yoshihara, K. Nakashima, M. Higuchi, Jpn. J. Appl. Phys. 15, 1169 (1976).
[CrossRef]

Okada, K.

K. Kamiya, K. Yoshihara, K. Okada, Jpn. J. Appl. Phys. 7, 1129 (1968).
[CrossRef]

Papoulis, A.

A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1977), Chap. 7.3.

Sakai, H.

G. Vanasse, H. Sakai, “Fourier Spectroscopy,” in Progress in Optics, Vol. 6, E. Wolf, Eds. (North-Holland, New York, 1967), Secs. 4 and 8.1.

Simpson, R. W.

Stroke, G. W.

G. W. Stroke, A. T. Funkhouser, Phys. Lett. 16, 272 (1965).
[CrossRef]

Takahashi, R.

T. Tsuno, R. Takahashi, in Proceedings, Ninth International Congress, High-Speed Photography, W. G. Hyzer, W. G. Chace, Eds. (Society of Motion Picture and Television Engineers, New York, 1970), p. 21.

Talmi, Y.

Tsuno, T.

T. Tsuno, R. Takahashi, in Proceedings, Ninth International Congress, High-Speed Photography, W. G. Hyzer, W. G. Chace, Eds. (Society of Motion Picture and Television Engineers, New York, 1970), p. 21.

Vanasse, G.

G. Vanasse, H. Sakai, “Fourier Spectroscopy,” in Progress in Optics, Vol. 6, E. Wolf, Eds. (North-Holland, New York, 1967), Secs. 4 and 8.1.

Yoshihara, K.

K. Yoshihara, K. Nakashima, M. Higuchi, Jpn. J. Appl. Phys. 15, 1169 (1976).
[CrossRef]

K. Kamiya, K. Yoshihara, K. Okada, Jpn. J. Appl. Phys. 7, 1129 (1968).
[CrossRef]

K. Yoshihara, A. Kitade, Jpn. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

Appl. Opt. (2)

Jpn. J. Appl. Phys. (3)

K. Yoshihara, A. Kitade, Jpn. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

K. Kamiya, K. Yoshihara, K. Okada, Jpn. J. Appl. Phys. 7, 1129 (1968).
[CrossRef]

K. Yoshihara, K. Nakashima, M. Higuchi, Jpn. J. Appl. Phys. 15, 1169 (1976).
[CrossRef]

Phys. Lett. (1)

G. W. Stroke, A. T. Funkhouser, Phys. Lett. 16, 272 (1965).
[CrossRef]

Other (6)

H. J. Caulfield, “Spectroscopy,” in Handbook of Optical Holography, H. J. Caulfield, Eds. (Academic, New York, 1979); and “Holographic Spectroscopy,” in Advances in Holography, Vol. 2, N. Farhat, Eds. (Marcel Dekker, New York, 1976).

T. Tsuno, R. Takahashi, in Proceedings, Ninth International Congress, High-Speed Photography, W. G. Hyzer, W. G. Chace, Eds. (Society of Motion Picture and Television Engineers, New York, 1970), p. 21.

G. Vanasse, H. Sakai, “Fourier Spectroscopy,” in Progress in Optics, Vol. 6, E. Wolf, Eds. (North-Holland, New York, 1967), Secs. 4 and 8.1.

MN8090 Data Sheet (Matsushita Electronics Corp., Oct.1981).

L. Mertz, Transformations in Optics (Wiley, New York, 1965), pp. 27–33.

A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1977), Chap. 7.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram of the optics of the Fourier transform spectrometer: S, light source; BS, beam splitter; M1, M2, M3, plane mirrors; L, lens; D, self-scanning photodiode array.

Fig. 2
Fig. 2

Schematic diagram of the interferometer optics equivalent to Fig. 1. S1, S2, virtual sources; L, lens; l, distance between two corresponding points of the virtual sources; f, focal length.

Fig. 3
Fig. 3

Block diagram of the signal processing system.

Fig. 4
Fig. 4

Diagram of the peak-hold circuit.

Fig. 5
Fig. 5

Interferogram and spectrum of a low pressure mercury lamp.

Fig. 6
Fig. 6

Interferogram and spectrum of a LED.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i ( x ) = 0 s ( σ ) b ( σ ) ( 1 + cos 2 π σ l x / f ) d σ ,
I m = c · i ( m d - ϕ ) ,
S k = c · s ( f k / d l N ) ,             for k = 0 , , N / 2.
Δ σ = f / d l N ,
σ max = f / 2 d l = N Δ σ / 2 ;

Metrics