Abstract

Infrared laser beams (10.6 μm) are used to produce dynamic holograms on a recording medium composed of an oil film on a glass plate. The beams of diffraction orders 0 and ∓1 reconstructed in the visible (0.63 μm) from this hologram are made to interfere indicating any deformation/displacement of the object. Consideration is given to aberrations of the reconstructed waves and to vibrations. It is found that displacements can be measured accurately and that quality control of infrared components can be made easily in real-time.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Bryngdahl, J. Opt. Soc. Am. 59, 142 (1969).
    [CrossRef]
  2. K. Matsumoto, M. Takashima, J. Opt. Soc. Am. 60, 30 (1970).
    [CrossRef]
  3. N. Kobayashi, E. Wihardjo, S. Ueha, J. Tsujiuchi, Opt. Commun. 43, 308 (1982).
    [CrossRef]
  4. M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, Appl. Opt. 17, 3622 (1978).
    [CrossRef] [PubMed]
  5. M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, in Proceedings, International Conference on LasersOrlando, SPIE (1978), p. 666.
  6. F. Ledoyen, M. Cormier, accepted for publication in Can. J. Phys. (1984).
  7. R. A. Bartolini, Appl. Opt. 13, 129 (1974).
    [CrossRef] [PubMed]
  8. H. W. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966).
    [CrossRef] [PubMed]
  9. S. Lowenthal, Y. Belvaux, Rev. Opt. Theor. Instrum. 46, No. 1, 1 (1967).
  10. R. W. Meier, J. Opt. Soc. Am. 55, 987 (1965).
    [CrossRef]
  11. H. M. Smith, Principles of Holography (Wiley, New York, 1975), p. 175.
  12. P. Hariharan, B. F. Oreb, N. Brown, Appl. Opt. 22, 876 (1983).
    [CrossRef] [PubMed]
  13. K. G. Harding, J. S. Harris, Appl. Opt. 22, 856 (1983).
    [CrossRef] [PubMed]
  14. J. Lewandowski, B. Mongeau, M. Cormier, paper presented at the OSA Annual Meeting, New OrleansOct. 1983, J. Opt. Soc. Am.73, (Dec.1983).

1983 (2)

1982 (1)

N. Kobayashi, E. Wihardjo, S. Ueha, J. Tsujiuchi, Opt. Commun. 43, 308 (1982).
[CrossRef]

1978 (1)

1974 (1)

1970 (1)

1969 (1)

1967 (1)

S. Lowenthal, Y. Belvaux, Rev. Opt. Theor. Instrum. 46, No. 1, 1 (1967).

1966 (1)

1965 (1)

Bartolini, R. A.

Beaulieu, R.

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, Appl. Opt. 17, 3622 (1978).
[CrossRef] [PubMed]

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, in Proceedings, International Conference on LasersOrlando, SPIE (1978), p. 666.

Belvaux, Y.

S. Lowenthal, Y. Belvaux, Rev. Opt. Theor. Instrum. 46, No. 1, 1 (1967).

Blanchard, M.

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, Appl. Opt. 17, 3622 (1978).
[CrossRef] [PubMed]

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, in Proceedings, International Conference on LasersOrlando, SPIE (1978), p. 666.

Brown, N.

Bryngdahl, O.

Cormier, M.

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, Appl. Opt. 17, 3622 (1978).
[CrossRef] [PubMed]

F. Ledoyen, M. Cormier, accepted for publication in Can. J. Phys. (1984).

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, in Proceedings, International Conference on LasersOrlando, SPIE (1978), p. 666.

J. Lewandowski, B. Mongeau, M. Cormier, paper presented at the OSA Annual Meeting, New OrleansOct. 1983, J. Opt. Soc. Am.73, (Dec.1983).

Harding, K. G.

Hariharan, P.

Harris, J. S.

Kobayashi, N.

N. Kobayashi, E. Wihardjo, S. Ueha, J. Tsujiuchi, Opt. Commun. 43, 308 (1982).
[CrossRef]

Kogelnik, H. W.

Ledoyen, F.

F. Ledoyen, M. Cormier, accepted for publication in Can. J. Phys. (1984).

Lewandowski, J.

J. Lewandowski, B. Mongeau, M. Cormier, paper presented at the OSA Annual Meeting, New OrleansOct. 1983, J. Opt. Soc. Am.73, (Dec.1983).

Li, T.

Lowenthal, S.

S. Lowenthal, Y. Belvaux, Rev. Opt. Theor. Instrum. 46, No. 1, 1 (1967).

Matsumoto, K.

Meier, R. W.

Mongeau, B.

J. Lewandowski, B. Mongeau, M. Cormier, paper presented at the OSA Annual Meeting, New OrleansOct. 1983, J. Opt. Soc. Am.73, (Dec.1983).

Oreb, B. F.

Rioux, M.

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, Appl. Opt. 17, 3622 (1978).
[CrossRef] [PubMed]

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, in Proceedings, International Conference on LasersOrlando, SPIE (1978), p. 666.

Smith, H. M.

H. M. Smith, Principles of Holography (Wiley, New York, 1975), p. 175.

Takashima, M.

Tsujiuchi, J.

N. Kobayashi, E. Wihardjo, S. Ueha, J. Tsujiuchi, Opt. Commun. 43, 308 (1982).
[CrossRef]

Ueha, S.

N. Kobayashi, E. Wihardjo, S. Ueha, J. Tsujiuchi, Opt. Commun. 43, 308 (1982).
[CrossRef]

Wihardjo, E.

N. Kobayashi, E. Wihardjo, S. Ueha, J. Tsujiuchi, Opt. Commun. 43, 308 (1982).
[CrossRef]

Appl. Opt. (5)

J. Opt. Soc. Am. (3)

Opt. Commun. (1)

N. Kobayashi, E. Wihardjo, S. Ueha, J. Tsujiuchi, Opt. Commun. 43, 308 (1982).
[CrossRef]

Rev. Opt. Theor. Instrum. (1)

S. Lowenthal, Y. Belvaux, Rev. Opt. Theor. Instrum. 46, No. 1, 1 (1967).

Other (4)

H. M. Smith, Principles of Holography (Wiley, New York, 1975), p. 175.

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, in Proceedings, International Conference on LasersOrlando, SPIE (1978), p. 666.

F. Ledoyen, M. Cormier, accepted for publication in Can. J. Phys. (1984).

J. Lewandowski, B. Mongeau, M. Cormier, paper presented at the OSA Annual Meeting, New OrleansOct. 1983, J. Opt. Soc. Am.73, (Dec.1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental interferometry setup.

Fig. 2
Fig. 2

Position of IR object and reconstructed visible images. (Distances and angles are not to scale.)

Fig. 3
Fig. 3

Displacement measurement by interference of reconstructed waves of orders 0 and ∓1: (a) initial adjustment of mirror M4; (b) rotation of mirror M1 by ΔθOR = 2.8 ∓ 0.3 mrad: im = 3.7 ∓ 0.3 mm; ic = 3.8 ∓ 0.4 mm; (c) rotation of mirror M1 by ΔθOR = 5.6 ∓ 0.9 mrad: im = 2.1 ∓ 0.1 mm; ic = 1.9 ∓ 0.3 mm.

Fig. 4
Fig. 4

Displacement measurement by interference of reconstructed waves of orders −1 and +1: (a) rotation of mirror M1 by ΔθOR = 2.0 ∓ 0.4 mrad: im = 3.3 ∓ 0.2 mm; ic = 2.7 ∓ 0.5 mm; (b) rotation of mirror M1 by ΔθOR = 3.3 ∓ 0.6 mrad: im = 2.0 ∓ 0.2 mm; ic = 1.6 ∓ 0.3 mm.

Fig. 5
Fig. 5

Total path of He–Ne waves reconstructed from the hologram of a Ge lens.

Fig. 6
Fig. 6

Nondestructive inspection of a Ge lens. Interference Rings: (a) good quality lens (without magnification); (b) good quality lens (with magnification); (c) poor quality lens; (d) same lens as in (c).

Fig. 7
Fig. 7

Interference rings behavior: Eqs. (7) and (9).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ r = x 2 2 R R - x 2 2 R o ,
1 r i = 1 r c μ ( 1 r o - 1 r R ) ,
θ i = θ c μ ( θ o - θ R ) ,
r i 1 μ r o ,
θ i μ ( θ o - θ R ) = μ θ O R ,
I tot ( x ) = I ¯ + A o A R [ exp ( i k x θ O R ) + exp ( - i k x θ O R ) ] ,
i c = λ c Δ θ 1 = λ I R Δ θ O R .
r = d - ( r o / μ ) .
h m 2 = 2 r λ c ( m + ½ ) ,
f 2 = ( l - f - r o / μ ) .
Δ r = h m 2 2 ( 1 d - 1 d + ) = ( m + ½ ) λ c ,

Metrics