Abstract

A general technique is described for implementing sequential logic circuits optically. In contrast with semiconductor integrated circuitry, optical logic systems allow very flexible interconnections between gates and between subsystems. Because of this, certain processing algorithms which do not map well onto semiconductor architectures can be implemented on the optical structure. The algorithms and processor architectures which can be implemented on the optical system depend on the interconnection technique. We describe three interconnection methods and analyze their advantages and limitations.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Armand, A. A. Sawchuk, T. C. Strand, D. Boswell, B. H. Soffer, “Real-time Parallel Analog-to-Digital Conversion,” Opt. Lett. 5, 129 (1980).
    [CrossRef] [PubMed]
  2. P. Chavel, A. A. Sawchuk, T. C. Strand, A. R. Tanguay, B. H. Soffer, “Optical Logic with Variable-Grating-Mode Liquid-Crystal Devices,” Opt. Lett. 5, 398 (1980).
    [CrossRef] [PubMed]
  3. A. A. Sawchuk, T. C. Strand, A. R. Tanguay, “Nonlinear Real-time Optical Signal Processing,” USCIPI Report 1080, USC Image Processing Institute (1982).
  4. S. H. Lee, Ed., Optical Information Processing (Springer, New York, 1981), Chap. 7.
    [CrossRef]
  5. S. A. Collins, M. T. Fatehi, K. C. Wasmundt, “Optical Logic Gates Using a Hughes Liquid Crystal Light Valve,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 168 (1980).
  6. B. Horwitz, F. Corbett, “The PROM-Theory and Applications for the Pockels Readout Optical Modulator,” Opt. Eng. 17, 353 (1978).
  7. C. Warde, A. M. Weiss, A. D. Fisher, J. I. Thackara, “Optical Information Processing Characteristics of the Microchannel Spatial Light Modulator,” Appl. Opt. 20, 2066 (1981).
    [CrossRef] [PubMed]
  8. J. Tanida, Y. Ichioka, “Optical Logic Array Processing,” Proceedings, Tenth International Optical Computing Conference, IEEE Catalog. 83CH1880-4 (1983), p. 18.
    [CrossRef]
  9. R. A. Athale, H. S. Barr, S. H. Lee, B. J. Bartholomew, “Digital Optical Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 241, 149 (1980).
  10. D. H. Schaefer, J. P. Strong, “TSE Computers,” Proc. IEEE 65, 129 (1977).
    [CrossRef]
  11. A. Huang, “Parallel Algorithms for Optical-Digital Computers,” in Proceedings, Tenth International Optical Computing Conference, IEEE Catalog 83CH1880-4 (1983), p. 13.
    [CrossRef]
  12. A. Huang, “Design for an Optical General Purpose Digital Computer,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 119 (1980).
  13. H. Barr, S. H. Lee, “A Digital Optical Processing System,” in Proceedings, Tenth International Optical Computing Conference, IEEE Catalog. 83CH1880-4 (1983), p. 171.
    [CrossRef]
  14. B. K. Jenkins, A. A. Sawchuk, T. C. Strand, B. H. Soffer, “Sequential Optical Logic Implementation,” J. Opt. Soc. Am. 72, 1721A (1982); B. K. Jenkins, A. A. Sawchuk, T. C. Strand, R. Forchheimer, B. H. Soffer, “Sequential Optical Logic Implementation,” Appl. Opt. 23, 3455 (1984).
    [CrossRef] [PubMed]
  15. J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, D. Myer, “A New Real-Time Non-Coherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
    [CrossRef]
  16. U. Efron, B. H. Soffer, M. J. Little, J. Grinberg, M. A. Monahan, “Applications of Silicon Liquid Crystal Light Modulators for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 388, 152 (1983).
  17. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Optical Bistable Devices: The Basic Components of All-Optical Systems,” Opt. Eng. 19, 463 (1980).
    [CrossRef]
  18. E. Abraham, C. T. Seaton, S. D. Smith, “The Optical Computer,” Sci. Am. 248, 85 (Feb.1983).
    [CrossRef]
  19. P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices Promise Subpicosecond Switching,” IEEE Spectrum 18, 26 (June1981).
  20. C. R. Bowden, M. Ciftan, H. R. Robl, Eds., Optical Bistability (Plenum, New York, 1981).
    [CrossRef]
  21. C. A. Mead, L. A. Conway, Eds., Introduction to VLSI Systems (Addison-Wesley, Reading, Mass., 1980), Chap. 8.
  22. L. S. Haynes, R. L. Lau, D. P. Siewiorek, D. W. Mizell, “A Survey of Highly Parallel Computing,” Computer 15, 9 (Jan.1982).
  23. J. W. Tompkins, S. Hollock, “The Impact of Multi-Level Metalization on Semi-Custom LSI,” in Proceedings, Custom Integrated Circuits Conference (1982), p. 276.
  24. Ref. 21, C. L. Seitz, “System Timing,” Chap. 7.
  25. C. L. Seitz, “Ensemble Architectures for VLSI—A Survey and Taxonomy,” in Proceedings, 1982 Conference on Advances in Research in VLSIMIT, Cambridge, 1982, p. 130.
  26. H. T. Kung, “Why Systolic Architectures?” Computer 15, 37 (Jan.1982).
    [CrossRef]
  27. D. M. DeRuyck, L. Snyder, J. D. Unruh, “Processor Displacement: An Area-Tine Tradeoff Method for VLSI Design,” in Proceedings, Conference on Advances in Research in VLSI, MIT, Cambridge, Mass. (1982), p. 182.
  28. S.-Y. Kung, K. S. Arun, R. J. Gal-Ezer, D. V. Bhaskar Rao, “Wavefront Array Processor: Language, Architecture, and Applications,” IEEE Trans. Comput C-31, 1054 (1982).
    [CrossRef]
  29. Ref. 21, H. T. Kung, C. E. Leiserson, “Algorithms for VLSI Processor Arrays,” pp. 271–292.
  30. A. Rosenfeld, “Parallel Image Processing Using Cellular Arrays,” Computer 16, 14 (Jan.1983).
    [CrossRef]
  31. S.-Y. Rung, Electrical Engineering Department, University of Southern California; private communication.
  32. C. B. Burckhardt, “A Simpication of Lee’s Method of Generating Holograms by Computer,” Appl. Opt. 9, 1949 (1970).
    [PubMed]
  33. S. Lowenthal, P. Chavel, “Reduction of the Number of Samples in Computer Holograms for Image Processing,” Appl. Opt. 13, 718 (1974).
    [CrossRef] [PubMed]
  34. P. Chavel et al., “Architectures for a Sequential Optical Logic Processor,” in Proceedings, Tenth International Optical Computing Conference, IEEE Catlog 83CH1880-4 (1983), p. 6.
    [CrossRef]

1983 (4)

J. Tanida, Y. Ichioka, “Optical Logic Array Processing,” Proceedings, Tenth International Optical Computing Conference, IEEE Catalog. 83CH1880-4 (1983), p. 18.
[CrossRef]

U. Efron, B. H. Soffer, M. J. Little, J. Grinberg, M. A. Monahan, “Applications of Silicon Liquid Crystal Light Modulators for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 388, 152 (1983).

E. Abraham, C. T. Seaton, S. D. Smith, “The Optical Computer,” Sci. Am. 248, 85 (Feb.1983).
[CrossRef]

A. Rosenfeld, “Parallel Image Processing Using Cellular Arrays,” Computer 16, 14 (Jan.1983).
[CrossRef]

1982 (3)

H. T. Kung, “Why Systolic Architectures?” Computer 15, 37 (Jan.1982).
[CrossRef]

S.-Y. Kung, K. S. Arun, R. J. Gal-Ezer, D. V. Bhaskar Rao, “Wavefront Array Processor: Language, Architecture, and Applications,” IEEE Trans. Comput C-31, 1054 (1982).
[CrossRef]

B. K. Jenkins, A. A. Sawchuk, T. C. Strand, B. H. Soffer, “Sequential Optical Logic Implementation,” J. Opt. Soc. Am. 72, 1721A (1982); B. K. Jenkins, A. A. Sawchuk, T. C. Strand, R. Forchheimer, B. H. Soffer, “Sequential Optical Logic Implementation,” Appl. Opt. 23, 3455 (1984).
[CrossRef] [PubMed]

1981 (2)

1980 (6)

A. Huang, “Design for an Optical General Purpose Digital Computer,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 119 (1980).

R. A. Athale, H. S. Barr, S. H. Lee, B. J. Bartholomew, “Digital Optical Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 241, 149 (1980).

A. Armand, A. A. Sawchuk, T. C. Strand, D. Boswell, B. H. Soffer, “Real-time Parallel Analog-to-Digital Conversion,” Opt. Lett. 5, 129 (1980).
[CrossRef] [PubMed]

P. Chavel, A. A. Sawchuk, T. C. Strand, A. R. Tanguay, B. H. Soffer, “Optical Logic with Variable-Grating-Mode Liquid-Crystal Devices,” Opt. Lett. 5, 398 (1980).
[CrossRef] [PubMed]

S. A. Collins, M. T. Fatehi, K. C. Wasmundt, “Optical Logic Gates Using a Hughes Liquid Crystal Light Valve,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 168 (1980).

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Optical Bistable Devices: The Basic Components of All-Optical Systems,” Opt. Eng. 19, 463 (1980).
[CrossRef]

1978 (1)

B. Horwitz, F. Corbett, “The PROM-Theory and Applications for the Pockels Readout Optical Modulator,” Opt. Eng. 17, 353 (1978).

1977 (1)

D. H. Schaefer, J. P. Strong, “TSE Computers,” Proc. IEEE 65, 129 (1977).
[CrossRef]

1975 (1)

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, D. Myer, “A New Real-Time Non-Coherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

1974 (1)

1970 (1)

Abraham, E.

E. Abraham, C. T. Seaton, S. D. Smith, “The Optical Computer,” Sci. Am. 248, 85 (Feb.1983).
[CrossRef]

Armand, A.

Arun, K. S.

S.-Y. Kung, K. S. Arun, R. J. Gal-Ezer, D. V. Bhaskar Rao, “Wavefront Array Processor: Language, Architecture, and Applications,” IEEE Trans. Comput C-31, 1054 (1982).
[CrossRef]

Athale, R. A.

R. A. Athale, H. S. Barr, S. H. Lee, B. J. Bartholomew, “Digital Optical Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 241, 149 (1980).

Barr, H.

H. Barr, S. H. Lee, “A Digital Optical Processing System,” in Proceedings, Tenth International Optical Computing Conference, IEEE Catalog. 83CH1880-4 (1983), p. 171.
[CrossRef]

Barr, H. S.

R. A. Athale, H. S. Barr, S. H. Lee, B. J. Bartholomew, “Digital Optical Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 241, 149 (1980).

Bartholomew, B. J.

R. A. Athale, H. S. Barr, S. H. Lee, B. J. Bartholomew, “Digital Optical Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 241, 149 (1980).

Bhaskar Rao, D. V.

S.-Y. Kung, K. S. Arun, R. J. Gal-Ezer, D. V. Bhaskar Rao, “Wavefront Array Processor: Language, Architecture, and Applications,” IEEE Trans. Comput C-31, 1054 (1982).
[CrossRef]

Bleha, W.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, D. Myer, “A New Real-Time Non-Coherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

Boswell, D.

A. Armand, A. A. Sawchuk, T. C. Strand, D. Boswell, B. H. Soffer, “Real-time Parallel Analog-to-Digital Conversion,” Opt. Lett. 5, 129 (1980).
[CrossRef] [PubMed]

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, D. Myer, “A New Real-Time Non-Coherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

Burckhardt, C. B.

Chavel, P.

Collins, S. A.

S. A. Collins, M. T. Fatehi, K. C. Wasmundt, “Optical Logic Gates Using a Hughes Liquid Crystal Light Valve,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 168 (1980).

Corbett, F.

B. Horwitz, F. Corbett, “The PROM-Theory and Applications for the Pockels Readout Optical Modulator,” Opt. Eng. 17, 353 (1978).

DeRuyck, D. M.

D. M. DeRuyck, L. Snyder, J. D. Unruh, “Processor Displacement: An Area-Tine Tradeoff Method for VLSI Design,” in Proceedings, Conference on Advances in Research in VLSI, MIT, Cambridge, Mass. (1982), p. 182.

Efron, U.

U. Efron, B. H. Soffer, M. J. Little, J. Grinberg, M. A. Monahan, “Applications of Silicon Liquid Crystal Light Modulators for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 388, 152 (1983).

Fatehi, M. T.

S. A. Collins, M. T. Fatehi, K. C. Wasmundt, “Optical Logic Gates Using a Hughes Liquid Crystal Light Valve,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 168 (1980).

Fisher, A. D.

Fraas, L.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, D. Myer, “A New Real-Time Non-Coherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

Gal-Ezer, R. J.

S.-Y. Kung, K. S. Arun, R. J. Gal-Ezer, D. V. Bhaskar Rao, “Wavefront Array Processor: Language, Architecture, and Applications,” IEEE Trans. Comput C-31, 1054 (1982).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Optical Bistable Devices: The Basic Components of All-Optical Systems,” Opt. Eng. 19, 463 (1980).
[CrossRef]

Grinberg, J.

U. Efron, B. H. Soffer, M. J. Little, J. Grinberg, M. A. Monahan, “Applications of Silicon Liquid Crystal Light Modulators for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 388, 152 (1983).

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, D. Myer, “A New Real-Time Non-Coherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

Haynes, L. S.

L. S. Haynes, R. L. Lau, D. P. Siewiorek, D. W. Mizell, “A Survey of Highly Parallel Computing,” Computer 15, 9 (Jan.1982).

Hollock, S.

J. W. Tompkins, S. Hollock, “The Impact of Multi-Level Metalization on Semi-Custom LSI,” in Proceedings, Custom Integrated Circuits Conference (1982), p. 276.

Horwitz, B.

B. Horwitz, F. Corbett, “The PROM-Theory and Applications for the Pockels Readout Optical Modulator,” Opt. Eng. 17, 353 (1978).

Huang, A.

A. Huang, “Design for an Optical General Purpose Digital Computer,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 119 (1980).

A. Huang, “Parallel Algorithms for Optical-Digital Computers,” in Proceedings, Tenth International Optical Computing Conference, IEEE Catalog 83CH1880-4 (1983), p. 13.
[CrossRef]

Ichioka, Y.

J. Tanida, Y. Ichioka, “Optical Logic Array Processing,” Proceedings, Tenth International Optical Computing Conference, IEEE Catalog. 83CH1880-4 (1983), p. 18.
[CrossRef]

Jacobson, A.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, D. Myer, “A New Real-Time Non-Coherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

Jenkins, B. K.

B. K. Jenkins, A. A. Sawchuk, T. C. Strand, B. H. Soffer, “Sequential Optical Logic Implementation,” J. Opt. Soc. Am. 72, 1721A (1982); B. K. Jenkins, A. A. Sawchuk, T. C. Strand, R. Forchheimer, B. H. Soffer, “Sequential Optical Logic Implementation,” Appl. Opt. 23, 3455 (1984).
[CrossRef] [PubMed]

Kung, H. T.

H. T. Kung, “Why Systolic Architectures?” Computer 15, 37 (Jan.1982).
[CrossRef]

Ref. 21, H. T. Kung, C. E. Leiserson, “Algorithms for VLSI Processor Arrays,” pp. 271–292.

Kung, S.-Y.

S.-Y. Kung, K. S. Arun, R. J. Gal-Ezer, D. V. Bhaskar Rao, “Wavefront Array Processor: Language, Architecture, and Applications,” IEEE Trans. Comput C-31, 1054 (1982).
[CrossRef]

Lau, R. L.

L. S. Haynes, R. L. Lau, D. P. Siewiorek, D. W. Mizell, “A Survey of Highly Parallel Computing,” Computer 15, 9 (Jan.1982).

Lee, S. H.

R. A. Athale, H. S. Barr, S. H. Lee, B. J. Bartholomew, “Digital Optical Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 241, 149 (1980).

H. Barr, S. H. Lee, “A Digital Optical Processing System,” in Proceedings, Tenth International Optical Computing Conference, IEEE Catalog. 83CH1880-4 (1983), p. 171.
[CrossRef]

Leiserson, C. E.

Ref. 21, H. T. Kung, C. E. Leiserson, “Algorithms for VLSI Processor Arrays,” pp. 271–292.

Little, M. J.

U. Efron, B. H. Soffer, M. J. Little, J. Grinberg, M. A. Monahan, “Applications of Silicon Liquid Crystal Light Modulators for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 388, 152 (1983).

Lowenthal, S.

McCall, S. L.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Optical Bistable Devices: The Basic Components of All-Optical Systems,” Opt. Eng. 19, 463 (1980).
[CrossRef]

Miller, L.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, D. Myer, “A New Real-Time Non-Coherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

Mizell, D. W.

L. S. Haynes, R. L. Lau, D. P. Siewiorek, D. W. Mizell, “A Survey of Highly Parallel Computing,” Computer 15, 9 (Jan.1982).

Monahan, M. A.

U. Efron, B. H. Soffer, M. J. Little, J. Grinberg, M. A. Monahan, “Applications of Silicon Liquid Crystal Light Modulators for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 388, 152 (1983).

Myer, D.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, D. Myer, “A New Real-Time Non-Coherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

Rosenfeld, A.

A. Rosenfeld, “Parallel Image Processing Using Cellular Arrays,” Computer 16, 14 (Jan.1983).
[CrossRef]

Rung, S.-Y.

S.-Y. Rung, Electrical Engineering Department, University of Southern California; private communication.

Sawchuk, A. A.

B. K. Jenkins, A. A. Sawchuk, T. C. Strand, B. H. Soffer, “Sequential Optical Logic Implementation,” J. Opt. Soc. Am. 72, 1721A (1982); B. K. Jenkins, A. A. Sawchuk, T. C. Strand, R. Forchheimer, B. H. Soffer, “Sequential Optical Logic Implementation,” Appl. Opt. 23, 3455 (1984).
[CrossRef] [PubMed]

P. Chavel, A. A. Sawchuk, T. C. Strand, A. R. Tanguay, B. H. Soffer, “Optical Logic with Variable-Grating-Mode Liquid-Crystal Devices,” Opt. Lett. 5, 398 (1980).
[CrossRef] [PubMed]

A. Armand, A. A. Sawchuk, T. C. Strand, D. Boswell, B. H. Soffer, “Real-time Parallel Analog-to-Digital Conversion,” Opt. Lett. 5, 129 (1980).
[CrossRef] [PubMed]

A. A. Sawchuk, T. C. Strand, A. R. Tanguay, “Nonlinear Real-time Optical Signal Processing,” USCIPI Report 1080, USC Image Processing Institute (1982).

Schaefer, D. H.

D. H. Schaefer, J. P. Strong, “TSE Computers,” Proc. IEEE 65, 129 (1977).
[CrossRef]

Seaton, C. T.

E. Abraham, C. T. Seaton, S. D. Smith, “The Optical Computer,” Sci. Am. 248, 85 (Feb.1983).
[CrossRef]

Seitz, C. L.

Ref. 21, C. L. Seitz, “System Timing,” Chap. 7.

C. L. Seitz, “Ensemble Architectures for VLSI—A Survey and Taxonomy,” in Proceedings, 1982 Conference on Advances in Research in VLSIMIT, Cambridge, 1982, p. 130.

Siewiorek, D. P.

L. S. Haynes, R. L. Lau, D. P. Siewiorek, D. W. Mizell, “A Survey of Highly Parallel Computing,” Computer 15, 9 (Jan.1982).

Smith, P. W.

P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices Promise Subpicosecond Switching,” IEEE Spectrum 18, 26 (June1981).

Smith, S. D.

E. Abraham, C. T. Seaton, S. D. Smith, “The Optical Computer,” Sci. Am. 248, 85 (Feb.1983).
[CrossRef]

Snyder, L.

D. M. DeRuyck, L. Snyder, J. D. Unruh, “Processor Displacement: An Area-Tine Tradeoff Method for VLSI Design,” in Proceedings, Conference on Advances in Research in VLSI, MIT, Cambridge, Mass. (1982), p. 182.

Soffer, B. H.

U. Efron, B. H. Soffer, M. J. Little, J. Grinberg, M. A. Monahan, “Applications of Silicon Liquid Crystal Light Modulators for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 388, 152 (1983).

B. K. Jenkins, A. A. Sawchuk, T. C. Strand, B. H. Soffer, “Sequential Optical Logic Implementation,” J. Opt. Soc. Am. 72, 1721A (1982); B. K. Jenkins, A. A. Sawchuk, T. C. Strand, R. Forchheimer, B. H. Soffer, “Sequential Optical Logic Implementation,” Appl. Opt. 23, 3455 (1984).
[CrossRef] [PubMed]

P. Chavel, A. A. Sawchuk, T. C. Strand, A. R. Tanguay, B. H. Soffer, “Optical Logic with Variable-Grating-Mode Liquid-Crystal Devices,” Opt. Lett. 5, 398 (1980).
[CrossRef] [PubMed]

A. Armand, A. A. Sawchuk, T. C. Strand, D. Boswell, B. H. Soffer, “Real-time Parallel Analog-to-Digital Conversion,” Opt. Lett. 5, 129 (1980).
[CrossRef] [PubMed]

Strand, T. C.

B. K. Jenkins, A. A. Sawchuk, T. C. Strand, B. H. Soffer, “Sequential Optical Logic Implementation,” J. Opt. Soc. Am. 72, 1721A (1982); B. K. Jenkins, A. A. Sawchuk, T. C. Strand, R. Forchheimer, B. H. Soffer, “Sequential Optical Logic Implementation,” Appl. Opt. 23, 3455 (1984).
[CrossRef] [PubMed]

A. Armand, A. A. Sawchuk, T. C. Strand, D. Boswell, B. H. Soffer, “Real-time Parallel Analog-to-Digital Conversion,” Opt. Lett. 5, 129 (1980).
[CrossRef] [PubMed]

P. Chavel, A. A. Sawchuk, T. C. Strand, A. R. Tanguay, B. H. Soffer, “Optical Logic with Variable-Grating-Mode Liquid-Crystal Devices,” Opt. Lett. 5, 398 (1980).
[CrossRef] [PubMed]

A. A. Sawchuk, T. C. Strand, A. R. Tanguay, “Nonlinear Real-time Optical Signal Processing,” USCIPI Report 1080, USC Image Processing Institute (1982).

Strong, J. P.

D. H. Schaefer, J. P. Strong, “TSE Computers,” Proc. IEEE 65, 129 (1977).
[CrossRef]

Tanguay, A. R.

P. Chavel, A. A. Sawchuk, T. C. Strand, A. R. Tanguay, B. H. Soffer, “Optical Logic with Variable-Grating-Mode Liquid-Crystal Devices,” Opt. Lett. 5, 398 (1980).
[CrossRef] [PubMed]

A. A. Sawchuk, T. C. Strand, A. R. Tanguay, “Nonlinear Real-time Optical Signal Processing,” USCIPI Report 1080, USC Image Processing Institute (1982).

Tanida, J.

J. Tanida, Y. Ichioka, “Optical Logic Array Processing,” Proceedings, Tenth International Optical Computing Conference, IEEE Catalog. 83CH1880-4 (1983), p. 18.
[CrossRef]

Thackara, J. I.

Tomlinson, W. J.

P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices Promise Subpicosecond Switching,” IEEE Spectrum 18, 26 (June1981).

Tompkins, J. W.

J. W. Tompkins, S. Hollock, “The Impact of Multi-Level Metalization on Semi-Custom LSI,” in Proceedings, Custom Integrated Circuits Conference (1982), p. 276.

Unruh, J. D.

D. M. DeRuyck, L. Snyder, J. D. Unruh, “Processor Displacement: An Area-Tine Tradeoff Method for VLSI Design,” in Proceedings, Conference on Advances in Research in VLSI, MIT, Cambridge, Mass. (1982), p. 182.

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Optical Bistable Devices: The Basic Components of All-Optical Systems,” Opt. Eng. 19, 463 (1980).
[CrossRef]

Warde, C.

Wasmundt, K. C.

S. A. Collins, M. T. Fatehi, K. C. Wasmundt, “Optical Logic Gates Using a Hughes Liquid Crystal Light Valve,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 168 (1980).

Weiss, A. M.

Appl. Opt. (3)

Computer (3)

A. Rosenfeld, “Parallel Image Processing Using Cellular Arrays,” Computer 16, 14 (Jan.1983).
[CrossRef]

L. S. Haynes, R. L. Lau, D. P. Siewiorek, D. W. Mizell, “A Survey of Highly Parallel Computing,” Computer 15, 9 (Jan.1982).

H. T. Kung, “Why Systolic Architectures?” Computer 15, 37 (Jan.1982).
[CrossRef]

IEEE Spectrum (1)

P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices Promise Subpicosecond Switching,” IEEE Spectrum 18, 26 (June1981).

IEEE Trans. Comput (1)

S.-Y. Kung, K. S. Arun, R. J. Gal-Ezer, D. V. Bhaskar Rao, “Wavefront Array Processor: Language, Architecture, and Applications,” IEEE Trans. Comput C-31, 1054 (1982).
[CrossRef]

J. Opt. Soc. Am. (1)

B. K. Jenkins, A. A. Sawchuk, T. C. Strand, B. H. Soffer, “Sequential Optical Logic Implementation,” J. Opt. Soc. Am. 72, 1721A (1982); B. K. Jenkins, A. A. Sawchuk, T. C. Strand, R. Forchheimer, B. H. Soffer, “Sequential Optical Logic Implementation,” Appl. Opt. 23, 3455 (1984).
[CrossRef] [PubMed]

Opt. Eng. (3)

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, D. Myer, “A New Real-Time Non-Coherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Optical Bistable Devices: The Basic Components of All-Optical Systems,” Opt. Eng. 19, 463 (1980).
[CrossRef]

B. Horwitz, F. Corbett, “The PROM-Theory and Applications for the Pockels Readout Optical Modulator,” Opt. Eng. 17, 353 (1978).

Opt. Lett. (2)

Proc. IEEE (1)

D. H. Schaefer, J. P. Strong, “TSE Computers,” Proc. IEEE 65, 129 (1977).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (4)

A. Huang, “Design for an Optical General Purpose Digital Computer,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 119 (1980).

U. Efron, B. H. Soffer, M. J. Little, J. Grinberg, M. A. Monahan, “Applications of Silicon Liquid Crystal Light Modulators for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 388, 152 (1983).

S. A. Collins, M. T. Fatehi, K. C. Wasmundt, “Optical Logic Gates Using a Hughes Liquid Crystal Light Valve,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 168 (1980).

R. A. Athale, H. S. Barr, S. H. Lee, B. J. Bartholomew, “Digital Optical Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 241, 149 (1980).

Proceedings, Tenth International Optical Computing Conference (1)

J. Tanida, Y. Ichioka, “Optical Logic Array Processing,” Proceedings, Tenth International Optical Computing Conference, IEEE Catalog. 83CH1880-4 (1983), p. 18.
[CrossRef]

Sci. Am. (1)

E. Abraham, C. T. Seaton, S. D. Smith, “The Optical Computer,” Sci. Am. 248, 85 (Feb.1983).
[CrossRef]

Other (13)

H. Barr, S. H. Lee, “A Digital Optical Processing System,” in Proceedings, Tenth International Optical Computing Conference, IEEE Catalog. 83CH1880-4 (1983), p. 171.
[CrossRef]

A. Huang, “Parallel Algorithms for Optical-Digital Computers,” in Proceedings, Tenth International Optical Computing Conference, IEEE Catalog 83CH1880-4 (1983), p. 13.
[CrossRef]

A. A. Sawchuk, T. C. Strand, A. R. Tanguay, “Nonlinear Real-time Optical Signal Processing,” USCIPI Report 1080, USC Image Processing Institute (1982).

S. H. Lee, Ed., Optical Information Processing (Springer, New York, 1981), Chap. 7.
[CrossRef]

P. Chavel et al., “Architectures for a Sequential Optical Logic Processor,” in Proceedings, Tenth International Optical Computing Conference, IEEE Catlog 83CH1880-4 (1983), p. 6.
[CrossRef]

Ref. 21, H. T. Kung, C. E. Leiserson, “Algorithms for VLSI Processor Arrays,” pp. 271–292.

S.-Y. Rung, Electrical Engineering Department, University of Southern California; private communication.

C. R. Bowden, M. Ciftan, H. R. Robl, Eds., Optical Bistability (Plenum, New York, 1981).
[CrossRef]

C. A. Mead, L. A. Conway, Eds., Introduction to VLSI Systems (Addison-Wesley, Reading, Mass., 1980), Chap. 8.

D. M. DeRuyck, L. Snyder, J. D. Unruh, “Processor Displacement: An Area-Tine Tradeoff Method for VLSI Design,” in Proceedings, Conference on Advances in Research in VLSI, MIT, Cambridge, Mass. (1982), p. 182.

J. W. Tompkins, S. Hollock, “The Impact of Multi-Level Metalization on Semi-Custom LSI,” in Proceedings, Custom Integrated Circuits Conference (1982), p. 276.

Ref. 21, C. L. Seitz, “System Timing,” Chap. 7.

C. L. Seitz, “Ensemble Architectures for VLSI—A Survey and Taxonomy,” in Proceedings, 1982 Conference on Advances in Research in VLSIMIT, Cambridge, 1982, p. 130.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Functional block diagram of sequential optical logic.

Fig. 2
Fig. 2

LCLV input/output characteristic.

Fig. 3
Fig. 3

Space-variant interconnection system. In general the hologram produces multiple diffraction orders, only one of which is used.

Fig. 4
Fig. 4

Space-invariant interconnection system.

Fig. 5
Fig. 5

Example of a space-invariant interconnection network. Nodes represent gates, and arrows are the (optical) interconnections.

Fig. 6
Fig. 6

Example of a system with space-invariant interconnections for parallel image processing operations. The system has three gates per image point: x, y, and z. These three gates are called a logic element. The gates are represented by dots in the figure, and their physical layout on the active device area is shown. The x subarray is composed of all the x gates in the processor with similar subarrays for the y and z gates. This configuration allows arbitrary interconnections within logic elements and also achieves a high gate utilization.

Fig. 7
Fig. 7

Example of a circuit with three gates per image point which could be implemented with the space-invariant arrangement of Fig. 6. This circuit implements a binary Laplacian edge detector on an image. All image points are processed in parallel. Each image point is denoted by E, and each is connected to its four nearest neighbors: A, B, C, and D.

Fig. 8
Fig. 8

Space-invariant interconnection pattern required for the binary Laplacian edge detector of Fig. 7.

Fig. 9
Fig. 9

Hybrid interconnection system. The first hologram is a space-variant element as in Fig. 3. The second hologram is an array of space-invariant filters.

Fig. 10
Fig. 10

Two-dimensional processor array as an example of the use of the hybrid interconnection system of Fig. 9. Connections within each block are space-variant, and connections between blocks are space-invariant.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

S S = p 2 q 2 N 2 ,
S T = N 2 S S = p 2 q 2 N 4 .
α = l 0 / l 1 .
l 1 = a F ( x , y ) d x d y .
l 0 = m [ A F ( x , y ) d x d y - a F ( x , y ) d x d y ] ,
α = m ( 1 / E 0 - 1 ) ,
E 0 = a F ( x , y ) d x d y / A F ( x , y ) d x d y .
a = q 2 a 0 ,
F ( x , y ) = sinc 4 ( x / 2 ) sinc 4 ( y / 2 ) .
N 100 - 200
1 M N 2
S S 1 = p 1 2 q 1 2 M ,
S S 2 = p 2 2 q 2 2 N 2 ,
S T 1 = p 1 2 q 1 2 M N 2             S T 2 = p 2 2 q 2 2 M N 2 ,
S T = p 2 q 2 M N 2 .
l 0 ( H ) = k = 1 M n σ N N g ( x , y ) d x d y ,
α H = l 0 ( H ) l 1 ( H ) = n M σ N N g ( x , y ) d x d y σ g ( x , y ) d x d y .
α = α P + α H ,
α = m ( 0.0025 ) + n M ( 0.0018 ) ,

Metrics