Abstract

The so-called reciprocity law that the response is not different when a light source replaces a detector (or vice versa) on a scattering surface has been examined experimentally for scattered light from a ground glass surface. The result shows that the reciprocity law is not strictly fulfilled. We call this phenomenon a nonreciprocal response in light scattering from rough surfaces. Measurements were taken with a goniometer in the domain where the scattering and incident angles are from 15 to 90°. As the ground glass surface becomes rougher, the response curve of the scattered light deviates further from the reciprocity law.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. T. De Hoop, “A Reciprocity Theorem for the Electromagnetic Field Scattered by an Obstacle,” Appl. Sci. Res. Sect. B 8, 135 (1960).
    [CrossRef]
  2. D. S. Saxon, “Tensor Scattering Matrix for the Electromagnetic Field,” Phys. Rev. 100, 1771 (1955).
    [CrossRef]
  3. D. E. Barrick, “Unacceptable Height Correlation Coefficients and the Quasi-specular Component in Rough Surface Scattering,” Radio Sci. 5, 647 (1970).
    [CrossRef]
  4. P. Beckman, “Scattering by Composite Rough Surfaces,” Proc. IEEE 53, 1012 (1965).
    [CrossRef]
  5. H. E. Bennett, J. O. Porteus, “Relation Between Surface Roughness and Specular Reflectance at Normal Incidence,” J. Opt. Soc. Am. 51, 123 (1961).
    [CrossRef]
  6. H. Davies, “The Reflection of Electromagnetic Waves from a Rough Surface,” Proc. IEEE 101, 209 (1954).
  7. A. K. Fung, “Theory of Radar Scatter from Rough Surfaces, Bistatic and Monostatic, with Application to Lunar Radar Return,” J. Geophys. Res. 69, 1063 (1964); “Scattering and Depolarization of EM Waves from a Rough Surface,” Proc. IEEE 54, 395 (1966).
    [CrossRef]
  8. J. C. Leader, “Bidirectional Scattering of Electromagnetic Waves from Rough Surfaces,” J. Appl. Phys. 42, 4808 (1971); “Analysis and Prediction of Laser Scattering from Rough-Surface Materials,” J. Opt. Soc. Am. 69, 610 (1979).
    [CrossRef]
  9. I. Ohlidal, “Expression for the Reflectance of Randomly Rough Surfaces Derived with the Fresnel Approximation,” Appl. Opt. 19, 1804 (1980).
    [CrossRef] [PubMed]
  10. R. A. Sprague, “Surface Roughness Measurement Using White Light Speckle,” Appl. Opt. 11, 2811 (1972).
    [CrossRef] [PubMed]
  11. Y. Wang, W. L. Wolfe, “Scattering from Microrough Surfaces: Comparison of Theory and Experiment,” J. Opt. Soc. Am. 73, 1596 (1983).
    [CrossRef]
  12. H. Okayama, I. Ogura, “Indicatrices of the Earth’s Surface Reflection from Landsat MSS Data,” Appl. Opt. 22, 3652 (1983).
    [CrossRef] [PubMed]
  13. J. Guild, “An Optical Smoothness-Meter for Evaluating the Surface Finish of Metals,” J. Sci. Instrum. 17, 178 (1940).
    [CrossRef]
  14. R. Gerharz, “Photographische Bestimmung der Indikatrix des Streulichtes,” Z. Instrumenten Kd. 72, Heft 2, 46 (1964).

1983 (2)

1980 (1)

1972 (1)

1971 (1)

J. C. Leader, “Bidirectional Scattering of Electromagnetic Waves from Rough Surfaces,” J. Appl. Phys. 42, 4808 (1971); “Analysis and Prediction of Laser Scattering from Rough-Surface Materials,” J. Opt. Soc. Am. 69, 610 (1979).
[CrossRef]

1970 (1)

D. E. Barrick, “Unacceptable Height Correlation Coefficients and the Quasi-specular Component in Rough Surface Scattering,” Radio Sci. 5, 647 (1970).
[CrossRef]

1965 (1)

P. Beckman, “Scattering by Composite Rough Surfaces,” Proc. IEEE 53, 1012 (1965).
[CrossRef]

1964 (2)

A. K. Fung, “Theory of Radar Scatter from Rough Surfaces, Bistatic and Monostatic, with Application to Lunar Radar Return,” J. Geophys. Res. 69, 1063 (1964); “Scattering and Depolarization of EM Waves from a Rough Surface,” Proc. IEEE 54, 395 (1966).
[CrossRef]

R. Gerharz, “Photographische Bestimmung der Indikatrix des Streulichtes,” Z. Instrumenten Kd. 72, Heft 2, 46 (1964).

1961 (1)

1960 (1)

A. T. De Hoop, “A Reciprocity Theorem for the Electromagnetic Field Scattered by an Obstacle,” Appl. Sci. Res. Sect. B 8, 135 (1960).
[CrossRef]

1955 (1)

D. S. Saxon, “Tensor Scattering Matrix for the Electromagnetic Field,” Phys. Rev. 100, 1771 (1955).
[CrossRef]

1954 (1)

H. Davies, “The Reflection of Electromagnetic Waves from a Rough Surface,” Proc. IEEE 101, 209 (1954).

1940 (1)

J. Guild, “An Optical Smoothness-Meter for Evaluating the Surface Finish of Metals,” J. Sci. Instrum. 17, 178 (1940).
[CrossRef]

Barrick, D. E.

D. E. Barrick, “Unacceptable Height Correlation Coefficients and the Quasi-specular Component in Rough Surface Scattering,” Radio Sci. 5, 647 (1970).
[CrossRef]

Beckman, P.

P. Beckman, “Scattering by Composite Rough Surfaces,” Proc. IEEE 53, 1012 (1965).
[CrossRef]

Bennett, H. E.

Davies, H.

H. Davies, “The Reflection of Electromagnetic Waves from a Rough Surface,” Proc. IEEE 101, 209 (1954).

De Hoop, A. T.

A. T. De Hoop, “A Reciprocity Theorem for the Electromagnetic Field Scattered by an Obstacle,” Appl. Sci. Res. Sect. B 8, 135 (1960).
[CrossRef]

Fung, A. K.

A. K. Fung, “Theory of Radar Scatter from Rough Surfaces, Bistatic and Monostatic, with Application to Lunar Radar Return,” J. Geophys. Res. 69, 1063 (1964); “Scattering and Depolarization of EM Waves from a Rough Surface,” Proc. IEEE 54, 395 (1966).
[CrossRef]

Gerharz, R.

R. Gerharz, “Photographische Bestimmung der Indikatrix des Streulichtes,” Z. Instrumenten Kd. 72, Heft 2, 46 (1964).

Guild, J.

J. Guild, “An Optical Smoothness-Meter for Evaluating the Surface Finish of Metals,” J. Sci. Instrum. 17, 178 (1940).
[CrossRef]

Leader, J. C.

J. C. Leader, “Bidirectional Scattering of Electromagnetic Waves from Rough Surfaces,” J. Appl. Phys. 42, 4808 (1971); “Analysis and Prediction of Laser Scattering from Rough-Surface Materials,” J. Opt. Soc. Am. 69, 610 (1979).
[CrossRef]

Ogura, I.

Ohlidal, I.

Okayama, H.

Porteus, J. O.

Saxon, D. S.

D. S. Saxon, “Tensor Scattering Matrix for the Electromagnetic Field,” Phys. Rev. 100, 1771 (1955).
[CrossRef]

Sprague, R. A.

Wang, Y.

Wolfe, W. L.

Appl. Opt. (3)

Appl. Sci. Res. Sect. B (1)

A. T. De Hoop, “A Reciprocity Theorem for the Electromagnetic Field Scattered by an Obstacle,” Appl. Sci. Res. Sect. B 8, 135 (1960).
[CrossRef]

J. Appl. Phys. (1)

J. C. Leader, “Bidirectional Scattering of Electromagnetic Waves from Rough Surfaces,” J. Appl. Phys. 42, 4808 (1971); “Analysis and Prediction of Laser Scattering from Rough-Surface Materials,” J. Opt. Soc. Am. 69, 610 (1979).
[CrossRef]

J. Geophys. Res. (1)

A. K. Fung, “Theory of Radar Scatter from Rough Surfaces, Bistatic and Monostatic, with Application to Lunar Radar Return,” J. Geophys. Res. 69, 1063 (1964); “Scattering and Depolarization of EM Waves from a Rough Surface,” Proc. IEEE 54, 395 (1966).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Sci. Instrum. (1)

J. Guild, “An Optical Smoothness-Meter for Evaluating the Surface Finish of Metals,” J. Sci. Instrum. 17, 178 (1940).
[CrossRef]

Phys. Rev. (1)

D. S. Saxon, “Tensor Scattering Matrix for the Electromagnetic Field,” Phys. Rev. 100, 1771 (1955).
[CrossRef]

Proc. IEEE (2)

H. Davies, “The Reflection of Electromagnetic Waves from a Rough Surface,” Proc. IEEE 101, 209 (1954).

P. Beckman, “Scattering by Composite Rough Surfaces,” Proc. IEEE 53, 1012 (1965).
[CrossRef]

Radio Sci. (1)

D. E. Barrick, “Unacceptable Height Correlation Coefficients and the Quasi-specular Component in Rough Surface Scattering,” Radio Sci. 5, 647 (1970).
[CrossRef]

Z. Instrumenten Kd. (1)

R. Gerharz, “Photographische Bestimmung der Indikatrix des Streulichtes,” Z. Instrumenten Kd. 72, Heft 2, 46 (1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental equipment.

Fig. 2
Fig. 2

Method of measurement. (a) I1 is the intensity of scattered light when the light is incident on the sample vertically. (b) I2 is the intensity of scattered light when the detecting direction is vertical on the sample.

Fig. 3
Fig. 3

Nonreciprocal responses of the scattered light from the surface of the ground glass plates with different mesh numbers.

Fig. 4
Fig. 4

Scanning electron microscope images of the surface of the ground glass plate.

Fig. 5
Fig. 5

Comparison of nonreciprocal responses between the samples (46 ground glass) with and without vacuum evaporated aluminum.

Metrics