Abstract

Microlens-ended fibers may be of great usefulness in medical applications, in particular in endoscopic laser treatment and surgery. Previous fabrication techniques of integral microlenses have mainly faced the problems related to optical communications, where damage due to high-power lasers does not occur. We describe a novel method, the laser-microfurnace technique, which uses the laser energy delivered by the fiber itself to create a microfurnace in a suitable material that reirradiates energy in a different wavelength band and causes the fiber tip to melt. This easy and reliable method is applicable to all types of fiber, even those with pure-silica core and large core diameter. No special equipment or training of the operator is required, so fabrication of microlenses may be carried out even in the surgery room. Experimental process parameters are reported.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sottini, S. Briani, G. C. Righini, V. Russo, S. Sottini, in Interdisciplinary Trends in Surgery, Vol. 2 (Minerva Medica, Torino, 1979), pp. 989–992.
  2. S. Sottini, M. Brenci, R. Falciai, G. C. Righini, V. Russo, A. M. Scheggi, “Dispositivo di trasmissione di radiazione laser di alta potenza che utilizza una fibra ottica a sezione variabile e suo procedimento di realizzazione,” Italian Patent9367 A/81.
  3. P. Kiefhaber, G. Nath, K. Moritz, “Endoscopical Control of Massive Gastrointestinal Hemorrhage by Irradiation with High-Power Neodymium YAG Laser,” Prog. Surg. 15, 140 (1977).
    [PubMed]
  4. S. Hopland, A. Berg, in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979), paper 9.3.
  5. P. Kayoun, C. Puech, M. Papuchon, H. J. Arditty, “Improved Coupling between Laser Diode and Single-Mode Fibre Tipped with a Chemically Etched Self-Centred Diffracting Element,” Electron. Lett. 17, 400 (1981).
    [CrossRef]
  6. M. Kawachi, T. Edahiro, H. Toba, “Microlens Formation on VAD Single-Mode Fibre Ends,” Electron. Lett. 18, 71 (1982).
    [CrossRef]
  7. G. Eisenstein, D. Vitello, “Chemically Etched Conical Microlenses for Coupling Single-Mode Lasers into Single-Mode Fibers,” Appl. Opt. 21, 3470 (1982).
    [CrossRef] [PubMed]
  8. L. G. Cohen, M. V. Schneider, “Microlenses for Coupling Junction Lasers to Optical Fibers,” Appl. Opt. 13, 89 (1974).
    [CrossRef] [PubMed]
  9. P. D. Bear, “Microlenses for Coupling Single-Mode Fibers to Single-Mode Thin-Film Waveguides,” Appl. Opt. 19, 2906 (1980).
    [CrossRef] [PubMed]
  10. J. Whitmann, “Contact-Bonded Epoxy-Resin Lenses to Fibre Endfaces,” Electron. Lett. 11, 477 (1975).
    [CrossRef]
  11. A. Dahlman, A. G. Wile, R. G. Burns, G. R. Mason, F. M. Johnson, M. W. Berns, “Laser Photoradiation Therapy of Cancer,” Cancer Res. 43, 434 (1983).
  12. C. C. Timmermann, “Highly Efficient Light Coupling from GaAlAs Lasers into Optical Fibers,” Appl. Opt. 15, 2432 (1976).
    [CrossRef] [PubMed]
  13. D. Kato, “Light Coupling from a Stripe-Geometry GaAs Diode Laser into an Optical Fiber with a Spherical End,” J. Appl. Phys. 44, 2756 (1973).
    [CrossRef]
  14. U. C. Paek, A. L. Weaver, “Formation of a Spherical Lens at Optical Fiber Ends with a CO2 Laser,” Appl. Opt. 14, 294 (1975).
    [CrossRef] [PubMed]
  15. W. W. Benson, D. A. Pinnow, T. C. Rich, “Coupling Efficiency Between GaAlAs Laser and Low Loss Optical Fibers,” Appl. Opt. 14, 2815 (1975).
    [CrossRef] [PubMed]
  16. Y. Murakami, J. Yamada, J. Sakai, T. Kimura, “Microlens Tipped on a Single-Mode Fibre End for InGaAsP Laser Coupling Movement,” Electron. Lett. 16, 321 (1980).
    [CrossRef]
  17. L. D’Auria, Y. Combemale, C. Moronvalle, A. Jacquez, “High Index Microlenses for GaAlAs Laser-Fibre Coupling,” Electron. Lett. 16, 322 (1980).
    [CrossRef]
  18. V. Russo, G. C. Righini, S. Sottini, S. Trigari, “Characterization of a Microlens-Ended Optical Fiber,” Alta Freq. 52, 197 (1983).

1983

A. Dahlman, A. G. Wile, R. G. Burns, G. R. Mason, F. M. Johnson, M. W. Berns, “Laser Photoradiation Therapy of Cancer,” Cancer Res. 43, 434 (1983).

V. Russo, G. C. Righini, S. Sottini, S. Trigari, “Characterization of a Microlens-Ended Optical Fiber,” Alta Freq. 52, 197 (1983).

1982

1981

P. Kayoun, C. Puech, M. Papuchon, H. J. Arditty, “Improved Coupling between Laser Diode and Single-Mode Fibre Tipped with a Chemically Etched Self-Centred Diffracting Element,” Electron. Lett. 17, 400 (1981).
[CrossRef]

1980

P. D. Bear, “Microlenses for Coupling Single-Mode Fibers to Single-Mode Thin-Film Waveguides,” Appl. Opt. 19, 2906 (1980).
[CrossRef] [PubMed]

Y. Murakami, J. Yamada, J. Sakai, T. Kimura, “Microlens Tipped on a Single-Mode Fibre End for InGaAsP Laser Coupling Movement,” Electron. Lett. 16, 321 (1980).
[CrossRef]

L. D’Auria, Y. Combemale, C. Moronvalle, A. Jacquez, “High Index Microlenses for GaAlAs Laser-Fibre Coupling,” Electron. Lett. 16, 322 (1980).
[CrossRef]

1977

P. Kiefhaber, G. Nath, K. Moritz, “Endoscopical Control of Massive Gastrointestinal Hemorrhage by Irradiation with High-Power Neodymium YAG Laser,” Prog. Surg. 15, 140 (1977).
[PubMed]

1976

1975

1974

1973

D. Kato, “Light Coupling from a Stripe-Geometry GaAs Diode Laser into an Optical Fiber with a Spherical End,” J. Appl. Phys. 44, 2756 (1973).
[CrossRef]

Arditty, H. J.

P. Kayoun, C. Puech, M. Papuchon, H. J. Arditty, “Improved Coupling between Laser Diode and Single-Mode Fibre Tipped with a Chemically Etched Self-Centred Diffracting Element,” Electron. Lett. 17, 400 (1981).
[CrossRef]

Bear, P. D.

Benson, W. W.

Berg, A.

S. Hopland, A. Berg, in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979), paper 9.3.

Berns, M. W.

A. Dahlman, A. G. Wile, R. G. Burns, G. R. Mason, F. M. Johnson, M. W. Berns, “Laser Photoradiation Therapy of Cancer,” Cancer Res. 43, 434 (1983).

Brenci, M.

S. Sottini, M. Brenci, R. Falciai, G. C. Righini, V. Russo, A. M. Scheggi, “Dispositivo di trasmissione di radiazione laser di alta potenza che utilizza una fibra ottica a sezione variabile e suo procedimento di realizzazione,” Italian Patent9367 A/81.

Briani, S.

M. Sottini, S. Briani, G. C. Righini, V. Russo, S. Sottini, in Interdisciplinary Trends in Surgery, Vol. 2 (Minerva Medica, Torino, 1979), pp. 989–992.

Burns, R. G.

A. Dahlman, A. G. Wile, R. G. Burns, G. R. Mason, F. M. Johnson, M. W. Berns, “Laser Photoradiation Therapy of Cancer,” Cancer Res. 43, 434 (1983).

Cohen, L. G.

Combemale, Y.

L. D’Auria, Y. Combemale, C. Moronvalle, A. Jacquez, “High Index Microlenses for GaAlAs Laser-Fibre Coupling,” Electron. Lett. 16, 322 (1980).
[CrossRef]

D’Auria, L.

L. D’Auria, Y. Combemale, C. Moronvalle, A. Jacquez, “High Index Microlenses for GaAlAs Laser-Fibre Coupling,” Electron. Lett. 16, 322 (1980).
[CrossRef]

Dahlman, A.

A. Dahlman, A. G. Wile, R. G. Burns, G. R. Mason, F. M. Johnson, M. W. Berns, “Laser Photoradiation Therapy of Cancer,” Cancer Res. 43, 434 (1983).

Edahiro, T.

M. Kawachi, T. Edahiro, H. Toba, “Microlens Formation on VAD Single-Mode Fibre Ends,” Electron. Lett. 18, 71 (1982).
[CrossRef]

Eisenstein, G.

Falciai, R.

S. Sottini, M. Brenci, R. Falciai, G. C. Righini, V. Russo, A. M. Scheggi, “Dispositivo di trasmissione di radiazione laser di alta potenza che utilizza una fibra ottica a sezione variabile e suo procedimento di realizzazione,” Italian Patent9367 A/81.

Hopland, S.

S. Hopland, A. Berg, in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979), paper 9.3.

Jacquez, A.

L. D’Auria, Y. Combemale, C. Moronvalle, A. Jacquez, “High Index Microlenses for GaAlAs Laser-Fibre Coupling,” Electron. Lett. 16, 322 (1980).
[CrossRef]

Johnson, F. M.

A. Dahlman, A. G. Wile, R. G. Burns, G. R. Mason, F. M. Johnson, M. W. Berns, “Laser Photoradiation Therapy of Cancer,” Cancer Res. 43, 434 (1983).

Kato, D.

D. Kato, “Light Coupling from a Stripe-Geometry GaAs Diode Laser into an Optical Fiber with a Spherical End,” J. Appl. Phys. 44, 2756 (1973).
[CrossRef]

Kawachi, M.

M. Kawachi, T. Edahiro, H. Toba, “Microlens Formation on VAD Single-Mode Fibre Ends,” Electron. Lett. 18, 71 (1982).
[CrossRef]

Kayoun, P.

P. Kayoun, C. Puech, M. Papuchon, H. J. Arditty, “Improved Coupling between Laser Diode and Single-Mode Fibre Tipped with a Chemically Etched Self-Centred Diffracting Element,” Electron. Lett. 17, 400 (1981).
[CrossRef]

Kiefhaber, P.

P. Kiefhaber, G. Nath, K. Moritz, “Endoscopical Control of Massive Gastrointestinal Hemorrhage by Irradiation with High-Power Neodymium YAG Laser,” Prog. Surg. 15, 140 (1977).
[PubMed]

Kimura, T.

Y. Murakami, J. Yamada, J. Sakai, T. Kimura, “Microlens Tipped on a Single-Mode Fibre End for InGaAsP Laser Coupling Movement,” Electron. Lett. 16, 321 (1980).
[CrossRef]

Mason, G. R.

A. Dahlman, A. G. Wile, R. G. Burns, G. R. Mason, F. M. Johnson, M. W. Berns, “Laser Photoradiation Therapy of Cancer,” Cancer Res. 43, 434 (1983).

Moritz, K.

P. Kiefhaber, G. Nath, K. Moritz, “Endoscopical Control of Massive Gastrointestinal Hemorrhage by Irradiation with High-Power Neodymium YAG Laser,” Prog. Surg. 15, 140 (1977).
[PubMed]

Moronvalle, C.

L. D’Auria, Y. Combemale, C. Moronvalle, A. Jacquez, “High Index Microlenses for GaAlAs Laser-Fibre Coupling,” Electron. Lett. 16, 322 (1980).
[CrossRef]

Murakami, Y.

Y. Murakami, J. Yamada, J. Sakai, T. Kimura, “Microlens Tipped on a Single-Mode Fibre End for InGaAsP Laser Coupling Movement,” Electron. Lett. 16, 321 (1980).
[CrossRef]

Nath, G.

P. Kiefhaber, G. Nath, K. Moritz, “Endoscopical Control of Massive Gastrointestinal Hemorrhage by Irradiation with High-Power Neodymium YAG Laser,” Prog. Surg. 15, 140 (1977).
[PubMed]

Paek, U. C.

Papuchon, M.

P. Kayoun, C. Puech, M. Papuchon, H. J. Arditty, “Improved Coupling between Laser Diode and Single-Mode Fibre Tipped with a Chemically Etched Self-Centred Diffracting Element,” Electron. Lett. 17, 400 (1981).
[CrossRef]

Pinnow, D. A.

Puech, C.

P. Kayoun, C. Puech, M. Papuchon, H. J. Arditty, “Improved Coupling between Laser Diode and Single-Mode Fibre Tipped with a Chemically Etched Self-Centred Diffracting Element,” Electron. Lett. 17, 400 (1981).
[CrossRef]

Rich, T. C.

Righini, G. C.

V. Russo, G. C. Righini, S. Sottini, S. Trigari, “Characterization of a Microlens-Ended Optical Fiber,” Alta Freq. 52, 197 (1983).

S. Sottini, M. Brenci, R. Falciai, G. C. Righini, V. Russo, A. M. Scheggi, “Dispositivo di trasmissione di radiazione laser di alta potenza che utilizza una fibra ottica a sezione variabile e suo procedimento di realizzazione,” Italian Patent9367 A/81.

M. Sottini, S. Briani, G. C. Righini, V. Russo, S. Sottini, in Interdisciplinary Trends in Surgery, Vol. 2 (Minerva Medica, Torino, 1979), pp. 989–992.

Russo, V.

V. Russo, G. C. Righini, S. Sottini, S. Trigari, “Characterization of a Microlens-Ended Optical Fiber,” Alta Freq. 52, 197 (1983).

M. Sottini, S. Briani, G. C. Righini, V. Russo, S. Sottini, in Interdisciplinary Trends in Surgery, Vol. 2 (Minerva Medica, Torino, 1979), pp. 989–992.

S. Sottini, M. Brenci, R. Falciai, G. C. Righini, V. Russo, A. M. Scheggi, “Dispositivo di trasmissione di radiazione laser di alta potenza che utilizza una fibra ottica a sezione variabile e suo procedimento di realizzazione,” Italian Patent9367 A/81.

Sakai, J.

Y. Murakami, J. Yamada, J. Sakai, T. Kimura, “Microlens Tipped on a Single-Mode Fibre End for InGaAsP Laser Coupling Movement,” Electron. Lett. 16, 321 (1980).
[CrossRef]

Scheggi, A. M.

S. Sottini, M. Brenci, R. Falciai, G. C. Righini, V. Russo, A. M. Scheggi, “Dispositivo di trasmissione di radiazione laser di alta potenza che utilizza una fibra ottica a sezione variabile e suo procedimento di realizzazione,” Italian Patent9367 A/81.

Schneider, M. V.

Sottini, M.

M. Sottini, S. Briani, G. C. Righini, V. Russo, S. Sottini, in Interdisciplinary Trends in Surgery, Vol. 2 (Minerva Medica, Torino, 1979), pp. 989–992.

Sottini, S.

V. Russo, G. C. Righini, S. Sottini, S. Trigari, “Characterization of a Microlens-Ended Optical Fiber,” Alta Freq. 52, 197 (1983).

M. Sottini, S. Briani, G. C. Righini, V. Russo, S. Sottini, in Interdisciplinary Trends in Surgery, Vol. 2 (Minerva Medica, Torino, 1979), pp. 989–992.

S. Sottini, M. Brenci, R. Falciai, G. C. Righini, V. Russo, A. M. Scheggi, “Dispositivo di trasmissione di radiazione laser di alta potenza che utilizza una fibra ottica a sezione variabile e suo procedimento di realizzazione,” Italian Patent9367 A/81.

Timmermann, C. C.

Toba, H.

M. Kawachi, T. Edahiro, H. Toba, “Microlens Formation on VAD Single-Mode Fibre Ends,” Electron. Lett. 18, 71 (1982).
[CrossRef]

Trigari, S.

V. Russo, G. C. Righini, S. Sottini, S. Trigari, “Characterization of a Microlens-Ended Optical Fiber,” Alta Freq. 52, 197 (1983).

Vitello, D.

Weaver, A. L.

Whitmann, J.

J. Whitmann, “Contact-Bonded Epoxy-Resin Lenses to Fibre Endfaces,” Electron. Lett. 11, 477 (1975).
[CrossRef]

Wile, A. G.

A. Dahlman, A. G. Wile, R. G. Burns, G. R. Mason, F. M. Johnson, M. W. Berns, “Laser Photoradiation Therapy of Cancer,” Cancer Res. 43, 434 (1983).

Yamada, J.

Y. Murakami, J. Yamada, J. Sakai, T. Kimura, “Microlens Tipped on a Single-Mode Fibre End for InGaAsP Laser Coupling Movement,” Electron. Lett. 16, 321 (1980).
[CrossRef]

Alta Freq.

V. Russo, G. C. Righini, S. Sottini, S. Trigari, “Characterization of a Microlens-Ended Optical Fiber,” Alta Freq. 52, 197 (1983).

Appl. Opt.

Cancer Res.

A. Dahlman, A. G. Wile, R. G. Burns, G. R. Mason, F. M. Johnson, M. W. Berns, “Laser Photoradiation Therapy of Cancer,” Cancer Res. 43, 434 (1983).

Electron. Lett.

Y. Murakami, J. Yamada, J. Sakai, T. Kimura, “Microlens Tipped on a Single-Mode Fibre End for InGaAsP Laser Coupling Movement,” Electron. Lett. 16, 321 (1980).
[CrossRef]

L. D’Auria, Y. Combemale, C. Moronvalle, A. Jacquez, “High Index Microlenses for GaAlAs Laser-Fibre Coupling,” Electron. Lett. 16, 322 (1980).
[CrossRef]

P. Kayoun, C. Puech, M. Papuchon, H. J. Arditty, “Improved Coupling between Laser Diode and Single-Mode Fibre Tipped with a Chemically Etched Self-Centred Diffracting Element,” Electron. Lett. 17, 400 (1981).
[CrossRef]

M. Kawachi, T. Edahiro, H. Toba, “Microlens Formation on VAD Single-Mode Fibre Ends,” Electron. Lett. 18, 71 (1982).
[CrossRef]

J. Whitmann, “Contact-Bonded Epoxy-Resin Lenses to Fibre Endfaces,” Electron. Lett. 11, 477 (1975).
[CrossRef]

J. Appl. Phys.

D. Kato, “Light Coupling from a Stripe-Geometry GaAs Diode Laser into an Optical Fiber with a Spherical End,” J. Appl. Phys. 44, 2756 (1973).
[CrossRef]

Prog. Surg.

P. Kiefhaber, G. Nath, K. Moritz, “Endoscopical Control of Massive Gastrointestinal Hemorrhage by Irradiation with High-Power Neodymium YAG Laser,” Prog. Surg. 15, 140 (1977).
[PubMed]

Other

S. Hopland, A. Berg, in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979), paper 9.3.

M. Sottini, S. Briani, G. C. Righini, V. Russo, S. Sottini, in Interdisciplinary Trends in Surgery, Vol. 2 (Minerva Medica, Torino, 1979), pp. 989–992.

S. Sottini, M. Brenci, R. Falciai, G. C. Righini, V. Russo, A. M. Scheggi, “Dispositivo di trasmissione di radiazione laser di alta potenza che utilizza una fibra ottica a sezione variabile e suo procedimento di realizzazione,” Italian Patent9367 A/81.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Cross section of an arc (a) and bulb (b) microlens tip.

Fig. 2
Fig. 2

Ray tracing for: (a) bulb microlens, (b) spherical arc, and (c) elliptical arc microlenses,, all with the same value of the parameter d = 0.6. R c is the radius of the fiber core; r b , r a , and r e are the radii of curvature of the bulb, the spherical, and the elliptical arc-microlenses, respectively.

Fig. 3
Fig. 3

Angular width of the output forward beam at 3 dB for bulb (dashed line) and arc (solid line) microlenses as a function of d.

Fig. 4
Fig. 4

Forward output power P m of microlenses, normalized to the output power P f from a flat-ended fiber, plotted vs d. The line corresponds to the theory, while the circles and crosses correspond to experimental measurements for bulb and arc microlenses, respectively.

Fig. 5
Fig. 5

Sketch of the fabrication process by the laser microfurnace technique.

Fig. 6
Fig. 6

Bulb microlens above the crater formed on the target during the fabrication process.

Fig. 7
Fig. 7

Layout of the experimental arrangement.

Fig. 8
Fig. 8

Absorption of two target samples including 0% (dashed line) and 20% (solid line) ferrous oxide, respectively, as a function of the wavelength.

Fig. 9
Fig. 9

(a) Arc and (b) bulb microlenses fabricated by the microfurnace technique.

Fig. 10
Fig. 10

Dependence of the radius of the microlenses fabricated on the laser power actually delivered at the fiber end. The constant parameters were h = 150 μm and t = 4 sec.

Fig. 11
Fig. 11

Practical setup for microlens fabrication by the microfurnace technique.

Metrics