Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Crosley, Eds., Various Papers in Laser Probes for Combustion Chemistry (American Chemical Society, Washington, D.C., 1980).
    [CrossRef]
  2. M. Alden, H. Edner, G. Holmstedt, S. Svanberg, T. Hoegberg, “Single-Pulse Laser-Induced OH Fluorescence in an Atmospheric Flame, Spatially Resolved with a Diode Array Detector,” Appl. Opt. 21, 1236 (1982).
    [CrossRef] [PubMed]
  3. M. J. Dyer, D. R. Crosley, “Two-Dimensional Imaging of OH Laser-Induced Fluorescence in a Flame,” Opt. Lett. 7, 382 (1982).
    [CrossRef] [PubMed]
  4. G. Kychakoff, R. D. Howe, R. H. Hanson, J. C. McDaniel, “Quantitative Visualization of Combustion Species in a Plane,” Appl. Opt. 21, 3225 (1982).
    [CrossRef] [PubMed]
  5. M. Alden, H. Edner, P. Grafstrom, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244 (1982).
    [CrossRef]
  6. R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, N. M. Laurendeau, “Two-Photon-Excited Fluorescence Measurement of Hydrogen Atoms in Flames,” Opt. Lett. 8, 365 (1983).
    [CrossRef] [PubMed]
  7. M. Alden, A. L. Schawlow, S. Svanberg, W. Wendt, P.-L. Zhang, “Three-Photon-Excited Fluorescence Detection of Atomic Hydrogen in an Atmospheric Pressure flame,” Opt. Lett. 9, 211 (1984).
    [CrossRef] [PubMed]
  8. J. E. M. Goldsmith, “Resonant Multiphoton Optogalvanic Detection of Atomic Hydrogen in Flames,” Opt. Lett. 7, 437 (1982); “Resonant Multiphoton Optogalvanic Detection of Atomic Oxygen in Flames,” J. Chem. Phys. 78, 1610 (1983).
    [CrossRef] [PubMed]
  9. M. Alden, S. Wallin, W. Wendt, “Applications of Two-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B33, 205 (1984).
  10. A. W. Miziolek, U.S. Army Ballistic Research Laboratory, private communication.
  11. W. K. Bischel, B. E. Perry, D. R. Crosley, “Two-Photon Laser-Induced Fluorescence of Oxygen and Nitrogen Atoms,” Chem. Phys. Lett. 82, 85 (1981).
    [CrossRef]

1984 (2)

M. Alden, A. L. Schawlow, S. Svanberg, W. Wendt, P.-L. Zhang, “Three-Photon-Excited Fluorescence Detection of Atomic Hydrogen in an Atmospheric Pressure flame,” Opt. Lett. 9, 211 (1984).
[CrossRef] [PubMed]

M. Alden, S. Wallin, W. Wendt, “Applications of Two-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B33, 205 (1984).

1983 (1)

1982 (5)

1981 (1)

W. K. Bischel, B. E. Perry, D. R. Crosley, “Two-Photon Laser-Induced Fluorescence of Oxygen and Nitrogen Atoms,” Chem. Phys. Lett. 82, 85 (1981).
[CrossRef]

Alden, M.

Bischel, W. K.

W. K. Bischel, B. E. Perry, D. R. Crosley, “Two-Photon Laser-Induced Fluorescence of Oxygen and Nitrogen Atoms,” Chem. Phys. Lett. 82, 85 (1981).
[CrossRef]

Crosley, D. R.

M. J. Dyer, D. R. Crosley, “Two-Dimensional Imaging of OH Laser-Induced Fluorescence in a Flame,” Opt. Lett. 7, 382 (1982).
[CrossRef] [PubMed]

W. K. Bischel, B. E. Perry, D. R. Crosley, “Two-Photon Laser-Induced Fluorescence of Oxygen and Nitrogen Atoms,” Chem. Phys. Lett. 82, 85 (1981).
[CrossRef]

Dyer, M. J.

Edner, H.

Goldsmith, J. E. M.

Grafstrom, P.

M. Alden, H. Edner, P. Grafstrom, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244 (1982).
[CrossRef]

Hanson, R. H.

Hoegberg, T.

Holmstedt, G.

Howe, R. D.

King, G. B.

Kychakoff, G.

Laurendeau, N. M.

Lucht, R. P.

McDaniel, J. C.

Miziolek, A. W.

A. W. Miziolek, U.S. Army Ballistic Research Laboratory, private communication.

Perry, B. E.

W. K. Bischel, B. E. Perry, D. R. Crosley, “Two-Photon Laser-Induced Fluorescence of Oxygen and Nitrogen Atoms,” Chem. Phys. Lett. 82, 85 (1981).
[CrossRef]

Salmon, J. T.

Schawlow, A. L.

Svanberg, S.

Sweeney, D. W.

Wallin, S.

M. Alden, S. Wallin, W. Wendt, “Applications of Two-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B33, 205 (1984).

Wendt, W.

M. Alden, S. Wallin, W. Wendt, “Applications of Two-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B33, 205 (1984).

M. Alden, A. L. Schawlow, S. Svanberg, W. Wendt, P.-L. Zhang, “Three-Photon-Excited Fluorescence Detection of Atomic Hydrogen in an Atmospheric Pressure flame,” Opt. Lett. 9, 211 (1984).
[CrossRef] [PubMed]

Zhang, P.-L.

Appl. Opt. (2)

Appl. Phys. (1)

M. Alden, S. Wallin, W. Wendt, “Applications of Two-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B33, 205 (1984).

Chem. Phys. Lett. (1)

W. K. Bischel, B. E. Perry, D. R. Crosley, “Two-Photon Laser-Induced Fluorescence of Oxygen and Nitrogen Atoms,” Chem. Phys. Lett. 82, 85 (1981).
[CrossRef]

Opt. Commun. (1)

M. Alden, H. Edner, P. Grafstrom, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244 (1982).
[CrossRef]

Opt. Lett. (4)

Other (2)

A. W. Miziolek, U.S. Army Ballistic Research Laboratory, private communication.

D. R. Crosley, Eds., Various Papers in Laser Probes for Combustion Chemistry (American Chemical Society, Washington, D.C., 1980).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Excitation and detection schemes for optical detection of O-atoms.

Fig. 2
Fig. 2

a, Two-photon-induced fluorescence spectra from oxygen atoms in a fuel-lean acetylene–oxygen flame showing the triplet and the collision-induced quintet transitions at 845 and 777 nm, respectively. For comparison a spectrum from room air is shown in b. The broad peaks in the green-yellow spectral region are due to diffusely scattered laser light at 532 and 573 nm.

Fig. 3
Fig. 3

Single-shot registration of the spatially resolved distribution of oxygen atoms in the lower part of a lean acetylene–oxygen flame.

Metrics