Abstract

The effectiveness of photon-limited image correlation for recognition of realistic imagery is investigated. The correlation signal is obtained by cross correlating a low light-level input scene and a high light-level reference image. The dependence of the probability density function of the correlation signal on the average number of detected photoevents and on the number of gray levels in the images is illustrated. Monte Carlo simulations of image correlation using low light-level scenes are found to be in close agreement with the theoretical predictions.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rose, “The Sensitivity Performance of the Human Eye on an Absolute Scale,” J. Opt. Soc. Am. 38, 196 (1948).
    [CrossRef] [PubMed]
  2. A. Rose, Vision Human and Electronic (Plenum, New York, 1977).
  3. G. M. Morris, “Scene Matching Using Photon-Limited Images,” J. Opt. Soc. Am. A 1, 482 (1984).
    [CrossRef]
  4. H. H. Barrett, W. Swindell, Radiological Imaging, Vol. 2 (Academic, New York, 1981), Chap. 10.
  5. J. J. Burke, “Estimating Objects from their Blurred and Grainy Images,” Proceedings, 1975 International Optical Computing Conference, IEEE Catalog No. 75 (CH0941-5C), (IEEE, New York, 1975), pp. 48–51.
  6. J. W. Goodman, J. F. Belsher, “Fundamental Limitations in Linear Invariant Restoration of Atmospherically Degraded Images,” Proc. Soc. Photo-Opt. Instrum. Eng. 75, 141 (1976).
  7. J. Nowakowski, M. Elbaum, “Fundamental Limits in Estimating Light Pattern Position,” J. Opt. Soc. Am. 73, 1744 (1983).
    [CrossRef]
  8. J. C. Dainty, Ed., Laser Speckle and Related Phenomena (Springer, New York, 1984).
  9. M. Lampton, “The Microchannel Image Intensifier,” Sci. Am. 245, 62 (1981).
    [CrossRef]
  10. A. Blazit, L. Koechlin, J. L. Oneto, “On Line Digital Correlation of Photon Counting TV Images for Stellar Interferometry,” in Image Processing Techniques in Astronomy, C. deJager, H. Nieuwenhuijzen, Eds. (D. Reidel, Dordrecht, 1975), pp. 79–84.
    [CrossRef]
  11. P. B. Boyce, “Low Light Detectors for Astronomy,” Science 198, 145 (1977).
    [CrossRef] [PubMed]
  12. “Digital Image Tubes and Intensified Self-Scanned Array Detectors,” Application Note E22, Electro-Optical Products Div., ITT (1980).
  13. C. B. Johnson, R. E. Blank, “Image Tube Intensified Linear and Area Self-Scanned Array Detectors for Astronomy,” Proc. Soc. Photo-Opt. Instrum. Eng. 290, 102 (1981).
  14. E. M. Kellogg, S. S. Murray, D. Bardas, “The High Speed Photicon,” IEEE Trans. Nucl. Sci. NS-26, 403 (1979).
    [CrossRef]
  15. J. G. Timothy, G. H. Mount, R. L. Bybee, “Detector Arrays for Photometric Measurements at Soft X-Ray, Ultraviolet and Visible Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 183, 169 (1979).
  16. M. Lampton, C. W. Carlson, “Low-Distortion Resistive Anodes for Two-Dimensional Position-Sensitive MCP Systems,” Rev. Sci. Instrum. 50, 1093 (1979).
    [CrossRef] [PubMed]
  17. C. Firmani, E. Ruiz, C. W. Carlson, M. Lampton, F. Paresce, “High-Resolution Imaging with a Two-Dimensional Resistive Anode Photon Counter,” Rev. Sci. Instrum. 53, 570 (1982).
    [CrossRef]
  18. D. Rees, I. McWhirter, P. A. Rounce, F. E. Barlow, S. J. Kellock, “Miniature Imaging Photon Detectors,” J. Phys. E 13, 763 (1980).
    [CrossRef]
  19. D. Rees, I. McWhirter, P. A. Rounce, F. E. Barlow, “Miniature Imaging Photon Detectors II. Devices with Transparent Photocathodes,” J. Phys. E 14, 229 (1981).
    [CrossRef]
  20. I. McWhirter, D. Rees, A. H. Greenaway, “Miniature Imaging Photon Detectors III. An Assessment of the Performance of the Resistive Anode IPD,” J. Phys. E 15, 145 (1982).
    [CrossRef]
  21. A. H. Greenaway, A. Lyons, I. McWhirter, D. Rees, A. Cochrane, “Miniature Imaging Photon Detector,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 365 (1982).
  22. L. Mertz, T. D. Tarbell, A. Title, “Low Noise Imaging Photon Counter for Astronomy,” Appl. Opt. 21, 628 (1982).
    [CrossRef] [PubMed]
  23. C. Papaliolios, L. Mertz, “New Two-Dimensional Photon Camera,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 360 (1982).
  24. T. Gonsiorowski, “Variable Threshold Discrimination in a Photon Imaging Detector,” Appl. Opt. 23, 1060 (1984).
    [CrossRef] [PubMed]
  25. L. Mandel, E. C. G. Sudarshan, E. Wolf, “Theory of Photo-Electric Detection of Light Fluctuations,” Proc. Phys. Soc. London 84, 435 (1964).
    [CrossRef]
  26. M. Bertolotti, “Photon Statistics,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins, E. R. Pike, Eds. (Plenum, New York, 1974), Chap. 2.
  27. C. W. Helstrom, Statistical Theory of Signal Detection (Pergamon, Oxford, 1968).
  28. IMSL, Inc., Houston, Texas.
  29. D. Casasent, D. Psaltis, “Position, Rotation, and Scale Invariant Optical Correlation,” Appl. Opt. 15, 1795 (1976).
    [CrossRef] [PubMed]
  30. R. Y. Young, E. L. Hall, “Scene Matching with Invariant Moments,” Comput. Graphics Image Process. 8, 16 (1978).
    [CrossRef]
  31. Y.-N. Hsu, H. H. Arsenault, G. April, “Rotation-Invariant Digital Pattern Recognition Using Circular Harmonic Expansion,” Appl. Opt. 21, 4012 (1982).
    [CrossRef] [PubMed]
  32. Y. Saito, S. Komatsu, H. Ohzu, “Scale and Rotation Invariant Real Time Optical Correlator Using Computer Generated Hologram,” Opt. Commun. 47, 8 (1983).
    [CrossRef]
  33. R. A. Messner, H. H. Szu, “Coordinate Transformation from an Image Plane Directly to an Invariant Feature Space,” Proceedings, IEEE Computer Vision and Pattern Recognition Conference (1983), pp. 522–530.
  34. R. Wu, H. Stark, “Rotation-Invariant Pattern Recognition Using a Vector Reference,” Appl. Opt. 23, 838 (1984).
    [CrossRef] [PubMed]

1984 (3)

1983 (3)

J. Nowakowski, M. Elbaum, “Fundamental Limits in Estimating Light Pattern Position,” J. Opt. Soc. Am. 73, 1744 (1983).
[CrossRef]

Y. Saito, S. Komatsu, H. Ohzu, “Scale and Rotation Invariant Real Time Optical Correlator Using Computer Generated Hologram,” Opt. Commun. 47, 8 (1983).
[CrossRef]

R. A. Messner, H. H. Szu, “Coordinate Transformation from an Image Plane Directly to an Invariant Feature Space,” Proceedings, IEEE Computer Vision and Pattern Recognition Conference (1983), pp. 522–530.

1982 (6)

I. McWhirter, D. Rees, A. H. Greenaway, “Miniature Imaging Photon Detectors III. An Assessment of the Performance of the Resistive Anode IPD,” J. Phys. E 15, 145 (1982).
[CrossRef]

A. H. Greenaway, A. Lyons, I. McWhirter, D. Rees, A. Cochrane, “Miniature Imaging Photon Detector,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 365 (1982).

C. Papaliolios, L. Mertz, “New Two-Dimensional Photon Camera,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 360 (1982).

C. Firmani, E. Ruiz, C. W. Carlson, M. Lampton, F. Paresce, “High-Resolution Imaging with a Two-Dimensional Resistive Anode Photon Counter,” Rev. Sci. Instrum. 53, 570 (1982).
[CrossRef]

L. Mertz, T. D. Tarbell, A. Title, “Low Noise Imaging Photon Counter for Astronomy,” Appl. Opt. 21, 628 (1982).
[CrossRef] [PubMed]

Y.-N. Hsu, H. H. Arsenault, G. April, “Rotation-Invariant Digital Pattern Recognition Using Circular Harmonic Expansion,” Appl. Opt. 21, 4012 (1982).
[CrossRef] [PubMed]

1981 (3)

M. Lampton, “The Microchannel Image Intensifier,” Sci. Am. 245, 62 (1981).
[CrossRef]

C. B. Johnson, R. E. Blank, “Image Tube Intensified Linear and Area Self-Scanned Array Detectors for Astronomy,” Proc. Soc. Photo-Opt. Instrum. Eng. 290, 102 (1981).

D. Rees, I. McWhirter, P. A. Rounce, F. E. Barlow, “Miniature Imaging Photon Detectors II. Devices with Transparent Photocathodes,” J. Phys. E 14, 229 (1981).
[CrossRef]

1980 (1)

D. Rees, I. McWhirter, P. A. Rounce, F. E. Barlow, S. J. Kellock, “Miniature Imaging Photon Detectors,” J. Phys. E 13, 763 (1980).
[CrossRef]

1979 (3)

E. M. Kellogg, S. S. Murray, D. Bardas, “The High Speed Photicon,” IEEE Trans. Nucl. Sci. NS-26, 403 (1979).
[CrossRef]

J. G. Timothy, G. H. Mount, R. L. Bybee, “Detector Arrays for Photometric Measurements at Soft X-Ray, Ultraviolet and Visible Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 183, 169 (1979).

M. Lampton, C. W. Carlson, “Low-Distortion Resistive Anodes for Two-Dimensional Position-Sensitive MCP Systems,” Rev. Sci. Instrum. 50, 1093 (1979).
[CrossRef] [PubMed]

1978 (1)

R. Y. Young, E. L. Hall, “Scene Matching with Invariant Moments,” Comput. Graphics Image Process. 8, 16 (1978).
[CrossRef]

1977 (1)

P. B. Boyce, “Low Light Detectors for Astronomy,” Science 198, 145 (1977).
[CrossRef] [PubMed]

1976 (2)

J. W. Goodman, J. F. Belsher, “Fundamental Limitations in Linear Invariant Restoration of Atmospherically Degraded Images,” Proc. Soc. Photo-Opt. Instrum. Eng. 75, 141 (1976).

D. Casasent, D. Psaltis, “Position, Rotation, and Scale Invariant Optical Correlation,” Appl. Opt. 15, 1795 (1976).
[CrossRef] [PubMed]

1964 (1)

L. Mandel, E. C. G. Sudarshan, E. Wolf, “Theory of Photo-Electric Detection of Light Fluctuations,” Proc. Phys. Soc. London 84, 435 (1964).
[CrossRef]

1948 (1)

April, G.

Arsenault, H. H.

Bardas, D.

E. M. Kellogg, S. S. Murray, D. Bardas, “The High Speed Photicon,” IEEE Trans. Nucl. Sci. NS-26, 403 (1979).
[CrossRef]

Barlow, F. E.

D. Rees, I. McWhirter, P. A. Rounce, F. E. Barlow, “Miniature Imaging Photon Detectors II. Devices with Transparent Photocathodes,” J. Phys. E 14, 229 (1981).
[CrossRef]

D. Rees, I. McWhirter, P. A. Rounce, F. E. Barlow, S. J. Kellock, “Miniature Imaging Photon Detectors,” J. Phys. E 13, 763 (1980).
[CrossRef]

Barrett, H. H.

H. H. Barrett, W. Swindell, Radiological Imaging, Vol. 2 (Academic, New York, 1981), Chap. 10.

Belsher, J. F.

J. W. Goodman, J. F. Belsher, “Fundamental Limitations in Linear Invariant Restoration of Atmospherically Degraded Images,” Proc. Soc. Photo-Opt. Instrum. Eng. 75, 141 (1976).

Bertolotti, M.

M. Bertolotti, “Photon Statistics,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins, E. R. Pike, Eds. (Plenum, New York, 1974), Chap. 2.

Blank, R. E.

C. B. Johnson, R. E. Blank, “Image Tube Intensified Linear and Area Self-Scanned Array Detectors for Astronomy,” Proc. Soc. Photo-Opt. Instrum. Eng. 290, 102 (1981).

Blazit, A.

A. Blazit, L. Koechlin, J. L. Oneto, “On Line Digital Correlation of Photon Counting TV Images for Stellar Interferometry,” in Image Processing Techniques in Astronomy, C. deJager, H. Nieuwenhuijzen, Eds. (D. Reidel, Dordrecht, 1975), pp. 79–84.
[CrossRef]

Boyce, P. B.

P. B. Boyce, “Low Light Detectors for Astronomy,” Science 198, 145 (1977).
[CrossRef] [PubMed]

Burke, J. J.

J. J. Burke, “Estimating Objects from their Blurred and Grainy Images,” Proceedings, 1975 International Optical Computing Conference, IEEE Catalog No. 75 (CH0941-5C), (IEEE, New York, 1975), pp. 48–51.

Bybee, R. L.

J. G. Timothy, G. H. Mount, R. L. Bybee, “Detector Arrays for Photometric Measurements at Soft X-Ray, Ultraviolet and Visible Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 183, 169 (1979).

Carlson, C. W.

C. Firmani, E. Ruiz, C. W. Carlson, M. Lampton, F. Paresce, “High-Resolution Imaging with a Two-Dimensional Resistive Anode Photon Counter,” Rev. Sci. Instrum. 53, 570 (1982).
[CrossRef]

M. Lampton, C. W. Carlson, “Low-Distortion Resistive Anodes for Two-Dimensional Position-Sensitive MCP Systems,” Rev. Sci. Instrum. 50, 1093 (1979).
[CrossRef] [PubMed]

Casasent, D.

Cochrane, A.

A. H. Greenaway, A. Lyons, I. McWhirter, D. Rees, A. Cochrane, “Miniature Imaging Photon Detector,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 365 (1982).

Elbaum, M.

Firmani, C.

C. Firmani, E. Ruiz, C. W. Carlson, M. Lampton, F. Paresce, “High-Resolution Imaging with a Two-Dimensional Resistive Anode Photon Counter,” Rev. Sci. Instrum. 53, 570 (1982).
[CrossRef]

Gonsiorowski, T.

Goodman, J. W.

J. W. Goodman, J. F. Belsher, “Fundamental Limitations in Linear Invariant Restoration of Atmospherically Degraded Images,” Proc. Soc. Photo-Opt. Instrum. Eng. 75, 141 (1976).

Greenaway, A. H.

I. McWhirter, D. Rees, A. H. Greenaway, “Miniature Imaging Photon Detectors III. An Assessment of the Performance of the Resistive Anode IPD,” J. Phys. E 15, 145 (1982).
[CrossRef]

A. H. Greenaway, A. Lyons, I. McWhirter, D. Rees, A. Cochrane, “Miniature Imaging Photon Detector,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 365 (1982).

Hall, E. L.

R. Y. Young, E. L. Hall, “Scene Matching with Invariant Moments,” Comput. Graphics Image Process. 8, 16 (1978).
[CrossRef]

Helstrom, C. W.

C. W. Helstrom, Statistical Theory of Signal Detection (Pergamon, Oxford, 1968).

Hsu, Y.-N.

Johnson, C. B.

C. B. Johnson, R. E. Blank, “Image Tube Intensified Linear and Area Self-Scanned Array Detectors for Astronomy,” Proc. Soc. Photo-Opt. Instrum. Eng. 290, 102 (1981).

Kellock, S. J.

D. Rees, I. McWhirter, P. A. Rounce, F. E. Barlow, S. J. Kellock, “Miniature Imaging Photon Detectors,” J. Phys. E 13, 763 (1980).
[CrossRef]

Kellogg, E. M.

E. M. Kellogg, S. S. Murray, D. Bardas, “The High Speed Photicon,” IEEE Trans. Nucl. Sci. NS-26, 403 (1979).
[CrossRef]

Koechlin, L.

A. Blazit, L. Koechlin, J. L. Oneto, “On Line Digital Correlation of Photon Counting TV Images for Stellar Interferometry,” in Image Processing Techniques in Astronomy, C. deJager, H. Nieuwenhuijzen, Eds. (D. Reidel, Dordrecht, 1975), pp. 79–84.
[CrossRef]

Komatsu, S.

Y. Saito, S. Komatsu, H. Ohzu, “Scale and Rotation Invariant Real Time Optical Correlator Using Computer Generated Hologram,” Opt. Commun. 47, 8 (1983).
[CrossRef]

Lampton, M.

C. Firmani, E. Ruiz, C. W. Carlson, M. Lampton, F. Paresce, “High-Resolution Imaging with a Two-Dimensional Resistive Anode Photon Counter,” Rev. Sci. Instrum. 53, 570 (1982).
[CrossRef]

M. Lampton, “The Microchannel Image Intensifier,” Sci. Am. 245, 62 (1981).
[CrossRef]

M. Lampton, C. W. Carlson, “Low-Distortion Resistive Anodes for Two-Dimensional Position-Sensitive MCP Systems,” Rev. Sci. Instrum. 50, 1093 (1979).
[CrossRef] [PubMed]

Lyons, A.

A. H. Greenaway, A. Lyons, I. McWhirter, D. Rees, A. Cochrane, “Miniature Imaging Photon Detector,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 365 (1982).

Mandel, L.

L. Mandel, E. C. G. Sudarshan, E. Wolf, “Theory of Photo-Electric Detection of Light Fluctuations,” Proc. Phys. Soc. London 84, 435 (1964).
[CrossRef]

McWhirter, I.

A. H. Greenaway, A. Lyons, I. McWhirter, D. Rees, A. Cochrane, “Miniature Imaging Photon Detector,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 365 (1982).

I. McWhirter, D. Rees, A. H. Greenaway, “Miniature Imaging Photon Detectors III. An Assessment of the Performance of the Resistive Anode IPD,” J. Phys. E 15, 145 (1982).
[CrossRef]

D. Rees, I. McWhirter, P. A. Rounce, F. E. Barlow, “Miniature Imaging Photon Detectors II. Devices with Transparent Photocathodes,” J. Phys. E 14, 229 (1981).
[CrossRef]

D. Rees, I. McWhirter, P. A. Rounce, F. E. Barlow, S. J. Kellock, “Miniature Imaging Photon Detectors,” J. Phys. E 13, 763 (1980).
[CrossRef]

Mertz, L.

L. Mertz, T. D. Tarbell, A. Title, “Low Noise Imaging Photon Counter for Astronomy,” Appl. Opt. 21, 628 (1982).
[CrossRef] [PubMed]

C. Papaliolios, L. Mertz, “New Two-Dimensional Photon Camera,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 360 (1982).

Messner, R. A.

R. A. Messner, H. H. Szu, “Coordinate Transformation from an Image Plane Directly to an Invariant Feature Space,” Proceedings, IEEE Computer Vision and Pattern Recognition Conference (1983), pp. 522–530.

Morris, G. M.

Mount, G. H.

J. G. Timothy, G. H. Mount, R. L. Bybee, “Detector Arrays for Photometric Measurements at Soft X-Ray, Ultraviolet and Visible Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 183, 169 (1979).

Murray, S. S.

E. M. Kellogg, S. S. Murray, D. Bardas, “The High Speed Photicon,” IEEE Trans. Nucl. Sci. NS-26, 403 (1979).
[CrossRef]

Nowakowski, J.

Ohzu, H.

Y. Saito, S. Komatsu, H. Ohzu, “Scale and Rotation Invariant Real Time Optical Correlator Using Computer Generated Hologram,” Opt. Commun. 47, 8 (1983).
[CrossRef]

Oneto, J. L.

A. Blazit, L. Koechlin, J. L. Oneto, “On Line Digital Correlation of Photon Counting TV Images for Stellar Interferometry,” in Image Processing Techniques in Astronomy, C. deJager, H. Nieuwenhuijzen, Eds. (D. Reidel, Dordrecht, 1975), pp. 79–84.
[CrossRef]

Papaliolios, C.

C. Papaliolios, L. Mertz, “New Two-Dimensional Photon Camera,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 360 (1982).

Paresce, F.

C. Firmani, E. Ruiz, C. W. Carlson, M. Lampton, F. Paresce, “High-Resolution Imaging with a Two-Dimensional Resistive Anode Photon Counter,” Rev. Sci. Instrum. 53, 570 (1982).
[CrossRef]

Psaltis, D.

Rees, D.

I. McWhirter, D. Rees, A. H. Greenaway, “Miniature Imaging Photon Detectors III. An Assessment of the Performance of the Resistive Anode IPD,” J. Phys. E 15, 145 (1982).
[CrossRef]

A. H. Greenaway, A. Lyons, I. McWhirter, D. Rees, A. Cochrane, “Miniature Imaging Photon Detector,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 365 (1982).

D. Rees, I. McWhirter, P. A. Rounce, F. E. Barlow, “Miniature Imaging Photon Detectors II. Devices with Transparent Photocathodes,” J. Phys. E 14, 229 (1981).
[CrossRef]

D. Rees, I. McWhirter, P. A. Rounce, F. E. Barlow, S. J. Kellock, “Miniature Imaging Photon Detectors,” J. Phys. E 13, 763 (1980).
[CrossRef]

Rose, A.

Rounce, P. A.

D. Rees, I. McWhirter, P. A. Rounce, F. E. Barlow, “Miniature Imaging Photon Detectors II. Devices with Transparent Photocathodes,” J. Phys. E 14, 229 (1981).
[CrossRef]

D. Rees, I. McWhirter, P. A. Rounce, F. E. Barlow, S. J. Kellock, “Miniature Imaging Photon Detectors,” J. Phys. E 13, 763 (1980).
[CrossRef]

Ruiz, E.

C. Firmani, E. Ruiz, C. W. Carlson, M. Lampton, F. Paresce, “High-Resolution Imaging with a Two-Dimensional Resistive Anode Photon Counter,” Rev. Sci. Instrum. 53, 570 (1982).
[CrossRef]

Saito, Y.

Y. Saito, S. Komatsu, H. Ohzu, “Scale and Rotation Invariant Real Time Optical Correlator Using Computer Generated Hologram,” Opt. Commun. 47, 8 (1983).
[CrossRef]

Stark, H.

Sudarshan, E. C. G.

L. Mandel, E. C. G. Sudarshan, E. Wolf, “Theory of Photo-Electric Detection of Light Fluctuations,” Proc. Phys. Soc. London 84, 435 (1964).
[CrossRef]

Swindell, W.

H. H. Barrett, W. Swindell, Radiological Imaging, Vol. 2 (Academic, New York, 1981), Chap. 10.

Szu, H. H.

R. A. Messner, H. H. Szu, “Coordinate Transformation from an Image Plane Directly to an Invariant Feature Space,” Proceedings, IEEE Computer Vision and Pattern Recognition Conference (1983), pp. 522–530.

Tarbell, T. D.

Timothy, J. G.

J. G. Timothy, G. H. Mount, R. L. Bybee, “Detector Arrays for Photometric Measurements at Soft X-Ray, Ultraviolet and Visible Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 183, 169 (1979).

Title, A.

Wolf, E.

L. Mandel, E. C. G. Sudarshan, E. Wolf, “Theory of Photo-Electric Detection of Light Fluctuations,” Proc. Phys. Soc. London 84, 435 (1964).
[CrossRef]

Wu, R.

Young, R. Y.

R. Y. Young, E. L. Hall, “Scene Matching with Invariant Moments,” Comput. Graphics Image Process. 8, 16 (1978).
[CrossRef]

Appl. Opt. (5)

Comput. Graphics Image Process. (1)

R. Y. Young, E. L. Hall, “Scene Matching with Invariant Moments,” Comput. Graphics Image Process. 8, 16 (1978).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

E. M. Kellogg, S. S. Murray, D. Bardas, “The High Speed Photicon,” IEEE Trans. Nucl. Sci. NS-26, 403 (1979).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Phys. E (3)

D. Rees, I. McWhirter, P. A. Rounce, F. E. Barlow, S. J. Kellock, “Miniature Imaging Photon Detectors,” J. Phys. E 13, 763 (1980).
[CrossRef]

D. Rees, I. McWhirter, P. A. Rounce, F. E. Barlow, “Miniature Imaging Photon Detectors II. Devices with Transparent Photocathodes,” J. Phys. E 14, 229 (1981).
[CrossRef]

I. McWhirter, D. Rees, A. H. Greenaway, “Miniature Imaging Photon Detectors III. An Assessment of the Performance of the Resistive Anode IPD,” J. Phys. E 15, 145 (1982).
[CrossRef]

Opt. Commun. (1)

Y. Saito, S. Komatsu, H. Ohzu, “Scale and Rotation Invariant Real Time Optical Correlator Using Computer Generated Hologram,” Opt. Commun. 47, 8 (1983).
[CrossRef]

Proc. Phys. Soc. London (1)

L. Mandel, E. C. G. Sudarshan, E. Wolf, “Theory of Photo-Electric Detection of Light Fluctuations,” Proc. Phys. Soc. London 84, 435 (1964).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (5)

A. H. Greenaway, A. Lyons, I. McWhirter, D. Rees, A. Cochrane, “Miniature Imaging Photon Detector,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 365 (1982).

C. Papaliolios, L. Mertz, “New Two-Dimensional Photon Camera,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 360 (1982).

J. G. Timothy, G. H. Mount, R. L. Bybee, “Detector Arrays for Photometric Measurements at Soft X-Ray, Ultraviolet and Visible Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 183, 169 (1979).

J. W. Goodman, J. F. Belsher, “Fundamental Limitations in Linear Invariant Restoration of Atmospherically Degraded Images,” Proc. Soc. Photo-Opt. Instrum. Eng. 75, 141 (1976).

C. B. Johnson, R. E. Blank, “Image Tube Intensified Linear and Area Self-Scanned Array Detectors for Astronomy,” Proc. Soc. Photo-Opt. Instrum. Eng. 290, 102 (1981).

Proceedings, IEEE Computer Vision and Pattern Recognition Conference (1)

R. A. Messner, H. H. Szu, “Coordinate Transformation from an Image Plane Directly to an Invariant Feature Space,” Proceedings, IEEE Computer Vision and Pattern Recognition Conference (1983), pp. 522–530.

Rev. Sci. Instrum. (2)

M. Lampton, C. W. Carlson, “Low-Distortion Resistive Anodes for Two-Dimensional Position-Sensitive MCP Systems,” Rev. Sci. Instrum. 50, 1093 (1979).
[CrossRef] [PubMed]

C. Firmani, E. Ruiz, C. W. Carlson, M. Lampton, F. Paresce, “High-Resolution Imaging with a Two-Dimensional Resistive Anode Photon Counter,” Rev. Sci. Instrum. 53, 570 (1982).
[CrossRef]

Sci. Am. (1)

M. Lampton, “The Microchannel Image Intensifier,” Sci. Am. 245, 62 (1981).
[CrossRef]

Science (1)

P. B. Boyce, “Low Light Detectors for Astronomy,” Science 198, 145 (1977).
[CrossRef] [PubMed]

Other (9)

“Digital Image Tubes and Intensified Self-Scanned Array Detectors,” Application Note E22, Electro-Optical Products Div., ITT (1980).

A. Blazit, L. Koechlin, J. L. Oneto, “On Line Digital Correlation of Photon Counting TV Images for Stellar Interferometry,” in Image Processing Techniques in Astronomy, C. deJager, H. Nieuwenhuijzen, Eds. (D. Reidel, Dordrecht, 1975), pp. 79–84.
[CrossRef]

J. C. Dainty, Ed., Laser Speckle and Related Phenomena (Springer, New York, 1984).

H. H. Barrett, W. Swindell, Radiological Imaging, Vol. 2 (Academic, New York, 1981), Chap. 10.

J. J. Burke, “Estimating Objects from their Blurred and Grainy Images,” Proceedings, 1975 International Optical Computing Conference, IEEE Catalog No. 75 (CH0941-5C), (IEEE, New York, 1975), pp. 48–51.

A. Rose, Vision Human and Electronic (Plenum, New York, 1977).

M. Bertolotti, “Photon Statistics,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins, E. R. Pike, Eds. (Plenum, New York, 1974), Chap. 2.

C. W. Helstrom, Statistical Theory of Signal Detection (Pergamon, Oxford, 1968).

IMSL, Inc., Houston, Texas.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

System diagram for image correlation at low light levels.

Fig. 2
Fig. 2

Computer-generated low light-level images: first column, Capitol Building; second column, Rush Rhees Library; third column, The Institute of Optics. The high light-level images contain 256 gray levels and have 256 × 256 elements. N ¯ is the average number of detected photoevents over the entire image.

Fig. 3
Fig. 3

Computer-generated low light-level images. Same as Fig. 2 except that the high light-level images have only four gray levels.

Fig. 4
Fig. 4

Probability density functions of the correlation signal when the input image V(x′,y′) is (I) Capitol Building, (II) Rush Rhees Library, and (III) The Institute of Optics. The average number of detected photoevents is (a) N ¯ = 250, (b) N ¯ = 500, and (c) N ¯ = 1000. The reference scene R(x′,y′) for all cases is the Capitol Building. The reference image and input images have 256 gray levels and contain 256 × 256 picture elements.

Fig. 5
Fig. 5

Same as Fig. 4 except that the reference image and input images have only four gray levels, and the number of detected photons is (a) N ¯ = 50, (b) N ¯ = 100, and (c) N ¯ = 200.

Fig. 6
Fig. 6

Histogram of correlation values obtained from a Monte Carlo simulation of image correlation at low levels when the input image V(x′,y′) is (I) Capitol Building, (II) Rush Rhees Library, and (III) The Institute of Optics. The average number of detected photoevents N ¯ = 1000. The reference scene R(x′,y′) is the Capitol Building.

Tables (2)

Tables Icon

Table I Values for Integrals in Eqs. (13) and (14); Reference Image, R(x′,y′)-Capitol Building; Image Size (All): 256 × 256

Tables Icon

Table II Expected Values and Standard Deviations of the Correlation Signal

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

V ^ ( x , y ) = i = 1 N δ ( x - x i , y - y i ) ,
P A ( N ) = ( N ¯ ) n exp ( - N ¯ ) / N ! ,
N ¯ = [ η τ / h v ¯ ] A d x d y V ( x , y ) ,
C ( x , y ) = i = 1 N R ( x + x i , y + y i ) ,
Φ ( ω ) = exp [ i ω C ( x , y ) ] = exp ( [ η τ / h v ¯ ) ] A d x d y V ( x , y ) · { exp [ i ω R ( x + x , y + y ) ] - 1 } ) ,
C ( x , y ) = N ¯ A d x d y p [ x , y V ( x , y ) ] R ( x + x , y + y ) , σ 2 = [ C ( x , y ) - C ( x , y ) ] 2
= N ¯ A d x d y p [ x , y V ( x , y ) ] R 2 ( x + x , y + y ) ,
p [ x , y V ( x , y ) ] = V ( x , y ) A d x d y V ( x , y )
C ( x , y ) = C ( x , y ) - C ( x , y ) σ
lim N ¯ Φ C ( ω ) = exp ( - ω 2 / 2 ) ,
lim N ¯ P [ C ( x , y ) ] = [ 1 / σ 2 π ) ] exp { - [ C ( x , y ) - C ( x , y ) ] 2 / ( 2 σ 2 ) } .
V L A M i j = [ η τ / ( h v ¯ ) ] Δ A i j d x d y V ( x , y ) [ η τ / ( h v ¯ ) ] V ( x i , y j ) Δ A ,
V L A M i j = N ¯ V ( x i , y j ) Δ A A d x d y V ( x , y ) .
C = C ( 0 , 0 ) = i = 1 N R ( x i , y i ) .
C = [ N ¯ / A d x d y V ( x , y ) ] A d x d y V ( x , y ) R ( x , y ) ,
σ C 2 = [ N ¯ / A d x d y V ( x , y ) ] A d x d y V ( x , y ) R 2 ( x , y ) ,

Metrics