Abstract

A real-time large-capacity rapid-scanning optical correlator utilizing a rotating grating concept is described. We have shown that the proposed optical scanning correlator (OSC) is capable of processing large-capacity optical memories with rapid spectrum scanning. With the implementation of a closed-circuit TV system, the OSC system can be applied in real-world situations. We have also experimentally tested the overall correlation sensitivity of the OSC system due to spectrum scanning, object orientation, scale changes, and tilting of the rotating grating. Several experimental results obtained with this proposed OSC system are included.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Cutrona, E. N. Leith, C. J. Palermo, L. J. Porcello, “Optical Data Processing and Filtering Systems,” IRE Trans. Inform. Theory IT-6, 386 (1960).
    [CrossRef]
  2. A. VanderLugt, “Signal Detection by Complex Spatial Filtering,” IEEE Trans. Inf. Theory IT-10, 139 (1964).
    [CrossRef]
  3. A. D. Gara, “Real-Time Tracking of Moving Objects by Optical Correlation,” Appl. Opt. 18, 172 (1979).
    [CrossRef] [PubMed]
  4. B. D. Guenther, C. R. Christensen, J. Upatnieks, “A Coherent Optical Processing: Another Approach,” IEEE J. Quantum Electron. QE-15, 1348 (1979).
    [CrossRef]
  5. F. T. S. Yu, M. S. Dymek, “Optical Information Parallel Processing: a Technique,” Appl. Opt. 20, 1450 (1981).
    [CrossRef] [PubMed]
  6. A. Grumet, “Automatic Target Recognition System,” U.S. Patent3,449,492 (Dec.1972).
  7. K. G. Leib, R. A. Bondurant, M. R. Wohlers, “Optical Matched Filter Correlator Memory Techniques and Storage Capacity,” Opt. Eng. 19, 414 (1980).
    [CrossRef]
  8. J. Mendelsohn, M. Wohlers, K. Leib, “Digital Analysis of the Effect of Terrain Clutter on the Performance of Matched Filter for Target Identification and Location,” Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979).
  9. J. G. Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, “Real-Time Optical Correlation with Solid-State Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 283 (1980).
  10. H.-K. Liu, J. G. Duthie, “Real-Time Screen-Aided Multiple-Image Optical Holographic Matched-Filter Correlator,” Appl. Opt. 21, 3278 (1982).
    [CrossRef] [PubMed]
  11. A. VanderLugt, “Effects of Small Displacements of Spatial Filters,” Appl. Opt. 6, 1221 (1967).
    [CrossRef]

1982 (1)

1981 (1)

1980 (2)

K. G. Leib, R. A. Bondurant, M. R. Wohlers, “Optical Matched Filter Correlator Memory Techniques and Storage Capacity,” Opt. Eng. 19, 414 (1980).
[CrossRef]

J. G. Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, “Real-Time Optical Correlation with Solid-State Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 283 (1980).

1979 (3)

B. D. Guenther, C. R. Christensen, J. Upatnieks, “A Coherent Optical Processing: Another Approach,” IEEE J. Quantum Electron. QE-15, 1348 (1979).
[CrossRef]

A. D. Gara, “Real-Time Tracking of Moving Objects by Optical Correlation,” Appl. Opt. 18, 172 (1979).
[CrossRef] [PubMed]

J. Mendelsohn, M. Wohlers, K. Leib, “Digital Analysis of the Effect of Terrain Clutter on the Performance of Matched Filter for Target Identification and Location,” Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979).

1967 (1)

1964 (1)

A. VanderLugt, “Signal Detection by Complex Spatial Filtering,” IEEE Trans. Inf. Theory IT-10, 139 (1964).
[CrossRef]

1960 (1)

L. J. Cutrona, E. N. Leith, C. J. Palermo, L. J. Porcello, “Optical Data Processing and Filtering Systems,” IRE Trans. Inform. Theory IT-6, 386 (1960).
[CrossRef]

Bondurant, R. A.

K. G. Leib, R. A. Bondurant, M. R. Wohlers, “Optical Matched Filter Correlator Memory Techniques and Storage Capacity,” Opt. Eng. 19, 414 (1980).
[CrossRef]

Christensen, C. R.

J. G. Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, “Real-Time Optical Correlation with Solid-State Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 283 (1980).

B. D. Guenther, C. R. Christensen, J. Upatnieks, “A Coherent Optical Processing: Another Approach,” IEEE J. Quantum Electron. QE-15, 1348 (1979).
[CrossRef]

Cutrona, L. J.

L. J. Cutrona, E. N. Leith, C. J. Palermo, L. J. Porcello, “Optical Data Processing and Filtering Systems,” IRE Trans. Inform. Theory IT-6, 386 (1960).
[CrossRef]

Duthie, J. G.

H.-K. Liu, J. G. Duthie, “Real-Time Screen-Aided Multiple-Image Optical Holographic Matched-Filter Correlator,” Appl. Opt. 21, 3278 (1982).
[CrossRef] [PubMed]

J. G. Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, “Real-Time Optical Correlation with Solid-State Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 283 (1980).

Dymek, M. S.

Gara, A. D.

Grumet, A.

A. Grumet, “Automatic Target Recognition System,” U.S. Patent3,449,492 (Dec.1972).

Guenther, B. D.

B. D. Guenther, C. R. Christensen, J. Upatnieks, “A Coherent Optical Processing: Another Approach,” IEEE J. Quantum Electron. QE-15, 1348 (1979).
[CrossRef]

Leib, K.

J. Mendelsohn, M. Wohlers, K. Leib, “Digital Analysis of the Effect of Terrain Clutter on the Performance of Matched Filter for Target Identification and Location,” Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979).

Leib, K. G.

K. G. Leib, R. A. Bondurant, M. R. Wohlers, “Optical Matched Filter Correlator Memory Techniques and Storage Capacity,” Opt. Eng. 19, 414 (1980).
[CrossRef]

Leith, E. N.

L. J. Cutrona, E. N. Leith, C. J. Palermo, L. J. Porcello, “Optical Data Processing and Filtering Systems,” IRE Trans. Inform. Theory IT-6, 386 (1960).
[CrossRef]

Liu, H.-K.

McKenzie, R. D.

J. G. Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, “Real-Time Optical Correlation with Solid-State Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 283 (1980).

Mendelsohn, J.

J. Mendelsohn, M. Wohlers, K. Leib, “Digital Analysis of the Effect of Terrain Clutter on the Performance of Matched Filter for Target Identification and Location,” Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979).

Palermo, C. J.

L. J. Cutrona, E. N. Leith, C. J. Palermo, L. J. Porcello, “Optical Data Processing and Filtering Systems,” IRE Trans. Inform. Theory IT-6, 386 (1960).
[CrossRef]

Porcello, L. J.

L. J. Cutrona, E. N. Leith, C. J. Palermo, L. J. Porcello, “Optical Data Processing and Filtering Systems,” IRE Trans. Inform. Theory IT-6, 386 (1960).
[CrossRef]

Upatnieks, J.

J. G. Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, “Real-Time Optical Correlation with Solid-State Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 283 (1980).

B. D. Guenther, C. R. Christensen, J. Upatnieks, “A Coherent Optical Processing: Another Approach,” IEEE J. Quantum Electron. QE-15, 1348 (1979).
[CrossRef]

VanderLugt, A.

A. VanderLugt, “Effects of Small Displacements of Spatial Filters,” Appl. Opt. 6, 1221 (1967).
[CrossRef]

A. VanderLugt, “Signal Detection by Complex Spatial Filtering,” IEEE Trans. Inf. Theory IT-10, 139 (1964).
[CrossRef]

Wohlers, M.

J. Mendelsohn, M. Wohlers, K. Leib, “Digital Analysis of the Effect of Terrain Clutter on the Performance of Matched Filter for Target Identification and Location,” Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979).

Wohlers, M. R.

K. G. Leib, R. A. Bondurant, M. R. Wohlers, “Optical Matched Filter Correlator Memory Techniques and Storage Capacity,” Opt. Eng. 19, 414 (1980).
[CrossRef]

Yu, F. T. S.

Appl. Opt. (4)

IEEE J. Quantum Electron. (1)

B. D. Guenther, C. R. Christensen, J. Upatnieks, “A Coherent Optical Processing: Another Approach,” IEEE J. Quantum Electron. QE-15, 1348 (1979).
[CrossRef]

IEEE Trans. Inf. Theory (1)

A. VanderLugt, “Signal Detection by Complex Spatial Filtering,” IEEE Trans. Inf. Theory IT-10, 139 (1964).
[CrossRef]

IRE Trans. Inform. Theory (1)

L. J. Cutrona, E. N. Leith, C. J. Palermo, L. J. Porcello, “Optical Data Processing and Filtering Systems,” IRE Trans. Inform. Theory IT-6, 386 (1960).
[CrossRef]

Opt. Eng. (1)

K. G. Leib, R. A. Bondurant, M. R. Wohlers, “Optical Matched Filter Correlator Memory Techniques and Storage Capacity,” Opt. Eng. 19, 414 (1980).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

J. Mendelsohn, M. Wohlers, K. Leib, “Digital Analysis of the Effect of Terrain Clutter on the Performance of Matched Filter for Target Identification and Location,” Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979).

J. G. Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, “Real-Time Optical Correlation with Solid-State Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 283 (1980).

Other (1)

A. Grumet, “Automatic Target Recognition System,” U.S. Patent3,449,492 (Dec.1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Real-time large-capacity optical scanning correlator. G1 and G2, the synchronous scanning grating.

Fig. 2
Fig. 2

Schematic diagram to describe the multifilter synthesis.

Fig. 3
Fig. 3

Multi-image correlation obtained with the OSC system: (a) input objects; (b) spatially multiplex matched filters; (c) output autocorrelation distribution.

Fig. 4
Fig. 4

Detection of object orientation: (a) input objects with autocorrelation traces; (b) multiplex spatial filter; (c) output correlation peak to identify the object orientation.

Fig. 5
Fig. 5

Normalized correlation peak intensity as a function of degree of object orientation.

Fig. 6
Fig. 6

Normalized correlation peak intensity as a function of spectrum displacement (i.e., degree of scanning grating deviation).

Fig. 7
Fig. 7

Normalized correlation peak intensity as a function scanning grating tilting deviation.

Fig. 8
Fig. 8

Effect of correlation due to scale changes: (a) Input objects of different scales. Their autocorrelation peaks and photometer scan traces are also shown in the figure. (b) Spatially multiplex matched spatial filter. (c) Output autocorrelation distribution.

Fig. 9
Fig. 9

Detection of object due to scale changes. The maximum correlation peak occurs at the second input object of the second row.

Fig. 10
Fig. 10

Normalized correlation peak intensity as a function of object scale changes.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

α n = λ f ν 0 cos ( π 2 + θ n ) ,
β n = λ f ν 0 sin ( π 2 + θ n ) ,             for n = 1 , 2 , , N ,
S n ( α - α n , β - β n ) = S n ( ρ - ρ 0 , θ - θ n ) ,
R n ( α , β ) = R 0 exp [ i 2 π ( u n α + v n β ) ] ,
u n = sin γ 1 λ = ν 0 cos ( π 2 + θ n ) { cos 2 ϕ + [ ν 0 λ cos ( π 2 + θ n ) ] 2 } 1 / 2 ,
v n = sin γ 2 λ = - sin ϕ λ - ν 0 sin ( π 2 + θ n ) { cos 2 ϕ + [ sin ϕ - ν 0 λ sin ( π 2 + θ n ) ] 2 } 1 / 2 ,
S n + R n 2 = S n 2 + R n 2 + R n S n * + R n * S n , for n = 1 , 2 , , N ,
H ( ρ , θ ) = K n = 1 N S n * ( ρ - ρ 0 , θ - 2 π n N ) exp [ i 2 π ( u n α + v n β ) ] ,
α = λ f ρ cos ( π 2 + θ ) ,
β = λ f ρ sin ( π 2 + θ ) .
E ( α , β ; t ) = S ( ρ - ρ 0 , θ - ω t ) H ( ρ , θ ) ,
E ( α , β ) = S ( ρ - ρ 0 , θ - 2 π n N ) S * ( ρ - ρ 0 , θ - 2 π n N ) × exp [ i 2 π ( u n α + v n β ) ] .
E ( α , β ) = | S ( ρ - ρ 0 , θ - 2 π n N ) | 2 exp [ i 2 π ( u n α + v n β ) ] .
x = - f λ sin γ 1 and y = - f λ sin γ 2 .
x = ν 0 λ f cos ( π 2 + θ n ) { 1 + [ ν 0 λ cos ( π 2 + θ n ) ] } 1 / 2 ,
y = - ν 0 λ f sin ( π 2 + θ n ) { 1 + [ ν 0 λ cos ( π 2 + θ n ) ] } 1 / 2 ,
x ν 0 λ f sin θ n ;
y - ν 0 λ f cos θ n .
S ( ρ , θ ± Δ θ ) = S ( u - u n ± Δ u , ν - ν n ± Δ ν ) ,
I = [ sinc ( π a Δ u ) ] 2 [ sinc ( π b Δ v ) ] 2 ,
Δ ρ λ f [ ( Δ u ) 2 + ( Δ ν ) 2 ] 1 / 2 = λ f 2 π [ ( 1 a ) 2 + ( 1 b ) 2 ] 1 / 2 ,
Δ θ 1 2 π ν 0 [ ( 1 a ) 2 + ( 1 b ) 2 ] 1 / 2 .
ν 0 = ν 0 cos ( Δ ψ ) ,
Δ ρ = f λ v 0 [ 1 - cos ( Δ ψ ) ] cos ( Δ ψ ) .
Δ ψ { 1 π ν 0 [ ( 1 a ) 2 + ( 1 b ) 2 ] 1 / 2 } 1 / 2 ,

Metrics