Abstract

Characteristics of high performance gallium phosphide Bragg cells are reported, including very high diffraction efficiencies and moderate bandwidths (for example, 45%/W, 530 MHz at 633 nm). Optical characteristics, including polarization dependence of acoustooptic diffraction efficiency, are considered explicitly. Design calculations are discussed and verified. Laser beam depolariation observed along the (1,0,−1) direction was found to affect the efficiency calculations. However, the depolarization effect could be isolated by considering an equivalent substrate configuration in which optical polarization was maintained. Then diffraction efficiency was accurately predicted by operating on the photoelastic tensor. Finally, possible models for optical effects observed in bulk GaP are outlined.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. C. Chang, R. Cadieux, G. Petrie, “Wideband Acousto-Optic Bragg Cells,” in Proceedings, 1981 IEEE Ultrasonics Symposium (IEEE, New York, 1981), p. 735.
    [CrossRef]
  2. N. Uchida, N. Niizeki, “Acoustooptic Deflection Materials and Techniques,” Proc. IEEE 61, 1073 (1973).
    [CrossRef]
  3. D. L. Hecht, G. W. Petrie, “Acousto-Optic Diffraction from Acoustic Anisotropic Shear Modes in Gallium Phosphide,” in Proceedings, 1980 IEEE Ultrasonics Symposium (IEEE, New York, 1980), p. 474.
  4. D. Laister, G. M. Jenkins, “Dislocations and Twins in Czochralski-Grown Gallium Phosphide Single Crystals,” J. Mater. Sci. 5, 862 (1970).
    [CrossRef]
  5. J. Hilgarth, “Direct Observation of Dislocations in GaP Crystals,” J. Mater. Sci. 13, 2697 (1978).
    [CrossRef]
  6. M. Kitada, “Morphology of Thermal Etch-Pits Formed on GaP Surfaces,” J. Mater. Sci. 15, 82 (1980).
    [CrossRef]
  7. M. Kitada, “Defect Distribution near Abraded Surface of III-V Compound Semiconductors,” J. Mater. Sci. 15, 1684 (1980).
    [CrossRef]
  8. M. Tajima, T. Iizuka, “Direct Observation of Imperfections in an LEC GaP Crystal by a Light Scattering Method,” Inst. Phys. Conf. Ser. 33a, 123 (1977).
  9. R. W. Dixon, “Photoelastic Properties of Selected Materials and Their Relevance for Applications to Accoustic Light Modulators and Scanners,” J. Appl. Phys. 38, 5149 (1967).
    [CrossRef]
  10. B. A. Auld, Acoustic Fields and Waves in Solids, Vol. 1 (Wiley, New York, 1973).
  11. D. F. Nelson, E. H. Turner, “Electro-Optic and Piezoelectric Coefficients and Refractive Index of Gallum Phosphide,” J. Appl. Phys. 39, 3337 (1968).
    [CrossRef]
  12. E. G. Spencer, P. V. Lenzo, A. A. Ballman, “Dielectric Materials for Electrooptic, Elastooptic, and Ultrasonic Device Applications,” Proc. IEEE 55, 2074 (1967).
    [CrossRef]
  13. I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason. SU-23, 2 (1976).
    [CrossRef]
  14. J. Rosenbaum, M. Price, R. Bonney, O. Zehl, “Fabrication of Wideband Bragg Cells Using Thermocompression Bonding and Ion Beam Milling,” IEEE Trans. Sonics Ultrason. (1984), ms. in revision.

1980 (2)

M. Kitada, “Morphology of Thermal Etch-Pits Formed on GaP Surfaces,” J. Mater. Sci. 15, 82 (1980).
[CrossRef]

M. Kitada, “Defect Distribution near Abraded Surface of III-V Compound Semiconductors,” J. Mater. Sci. 15, 1684 (1980).
[CrossRef]

1978 (1)

J. Hilgarth, “Direct Observation of Dislocations in GaP Crystals,” J. Mater. Sci. 13, 2697 (1978).
[CrossRef]

1977 (1)

M. Tajima, T. Iizuka, “Direct Observation of Imperfections in an LEC GaP Crystal by a Light Scattering Method,” Inst. Phys. Conf. Ser. 33a, 123 (1977).

1976 (1)

I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason. SU-23, 2 (1976).
[CrossRef]

1973 (1)

N. Uchida, N. Niizeki, “Acoustooptic Deflection Materials and Techniques,” Proc. IEEE 61, 1073 (1973).
[CrossRef]

1970 (1)

D. Laister, G. M. Jenkins, “Dislocations and Twins in Czochralski-Grown Gallium Phosphide Single Crystals,” J. Mater. Sci. 5, 862 (1970).
[CrossRef]

1968 (1)

D. F. Nelson, E. H. Turner, “Electro-Optic and Piezoelectric Coefficients and Refractive Index of Gallum Phosphide,” J. Appl. Phys. 39, 3337 (1968).
[CrossRef]

1967 (2)

E. G. Spencer, P. V. Lenzo, A. A. Ballman, “Dielectric Materials for Electrooptic, Elastooptic, and Ultrasonic Device Applications,” Proc. IEEE 55, 2074 (1967).
[CrossRef]

R. W. Dixon, “Photoelastic Properties of Selected Materials and Their Relevance for Applications to Accoustic Light Modulators and Scanners,” J. Appl. Phys. 38, 5149 (1967).
[CrossRef]

Auld, B. A.

B. A. Auld, Acoustic Fields and Waves in Solids, Vol. 1 (Wiley, New York, 1973).

Ballman, A. A.

E. G. Spencer, P. V. Lenzo, A. A. Ballman, “Dielectric Materials for Electrooptic, Elastooptic, and Ultrasonic Device Applications,” Proc. IEEE 55, 2074 (1967).
[CrossRef]

Bonney, R.

J. Rosenbaum, M. Price, R. Bonney, O. Zehl, “Fabrication of Wideband Bragg Cells Using Thermocompression Bonding and Ion Beam Milling,” IEEE Trans. Sonics Ultrason. (1984), ms. in revision.

Cadieux, R.

I. C. Chang, R. Cadieux, G. Petrie, “Wideband Acousto-Optic Bragg Cells,” in Proceedings, 1981 IEEE Ultrasonics Symposium (IEEE, New York, 1981), p. 735.
[CrossRef]

Chang, I. C.

I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason. SU-23, 2 (1976).
[CrossRef]

I. C. Chang, R. Cadieux, G. Petrie, “Wideband Acousto-Optic Bragg Cells,” in Proceedings, 1981 IEEE Ultrasonics Symposium (IEEE, New York, 1981), p. 735.
[CrossRef]

Dixon, R. W.

R. W. Dixon, “Photoelastic Properties of Selected Materials and Their Relevance for Applications to Accoustic Light Modulators and Scanners,” J. Appl. Phys. 38, 5149 (1967).
[CrossRef]

Hecht, D. L.

D. L. Hecht, G. W. Petrie, “Acousto-Optic Diffraction from Acoustic Anisotropic Shear Modes in Gallium Phosphide,” in Proceedings, 1980 IEEE Ultrasonics Symposium (IEEE, New York, 1980), p. 474.

Hilgarth, J.

J. Hilgarth, “Direct Observation of Dislocations in GaP Crystals,” J. Mater. Sci. 13, 2697 (1978).
[CrossRef]

Iizuka, T.

M. Tajima, T. Iizuka, “Direct Observation of Imperfections in an LEC GaP Crystal by a Light Scattering Method,” Inst. Phys. Conf. Ser. 33a, 123 (1977).

Jenkins, G. M.

D. Laister, G. M. Jenkins, “Dislocations and Twins in Czochralski-Grown Gallium Phosphide Single Crystals,” J. Mater. Sci. 5, 862 (1970).
[CrossRef]

Kitada, M.

M. Kitada, “Defect Distribution near Abraded Surface of III-V Compound Semiconductors,” J. Mater. Sci. 15, 1684 (1980).
[CrossRef]

M. Kitada, “Morphology of Thermal Etch-Pits Formed on GaP Surfaces,” J. Mater. Sci. 15, 82 (1980).
[CrossRef]

Laister, D.

D. Laister, G. M. Jenkins, “Dislocations and Twins in Czochralski-Grown Gallium Phosphide Single Crystals,” J. Mater. Sci. 5, 862 (1970).
[CrossRef]

Lenzo, P. V.

E. G. Spencer, P. V. Lenzo, A. A. Ballman, “Dielectric Materials for Electrooptic, Elastooptic, and Ultrasonic Device Applications,” Proc. IEEE 55, 2074 (1967).
[CrossRef]

Nelson, D. F.

D. F. Nelson, E. H. Turner, “Electro-Optic and Piezoelectric Coefficients and Refractive Index of Gallum Phosphide,” J. Appl. Phys. 39, 3337 (1968).
[CrossRef]

Niizeki, N.

N. Uchida, N. Niizeki, “Acoustooptic Deflection Materials and Techniques,” Proc. IEEE 61, 1073 (1973).
[CrossRef]

Petrie, G.

I. C. Chang, R. Cadieux, G. Petrie, “Wideband Acousto-Optic Bragg Cells,” in Proceedings, 1981 IEEE Ultrasonics Symposium (IEEE, New York, 1981), p. 735.
[CrossRef]

Petrie, G. W.

D. L. Hecht, G. W. Petrie, “Acousto-Optic Diffraction from Acoustic Anisotropic Shear Modes in Gallium Phosphide,” in Proceedings, 1980 IEEE Ultrasonics Symposium (IEEE, New York, 1980), p. 474.

Price, M.

J. Rosenbaum, M. Price, R. Bonney, O. Zehl, “Fabrication of Wideband Bragg Cells Using Thermocompression Bonding and Ion Beam Milling,” IEEE Trans. Sonics Ultrason. (1984), ms. in revision.

Rosenbaum, J.

J. Rosenbaum, M. Price, R. Bonney, O. Zehl, “Fabrication of Wideband Bragg Cells Using Thermocompression Bonding and Ion Beam Milling,” IEEE Trans. Sonics Ultrason. (1984), ms. in revision.

Spencer, E. G.

E. G. Spencer, P. V. Lenzo, A. A. Ballman, “Dielectric Materials for Electrooptic, Elastooptic, and Ultrasonic Device Applications,” Proc. IEEE 55, 2074 (1967).
[CrossRef]

Tajima, M.

M. Tajima, T. Iizuka, “Direct Observation of Imperfections in an LEC GaP Crystal by a Light Scattering Method,” Inst. Phys. Conf. Ser. 33a, 123 (1977).

Turner, E. H.

D. F. Nelson, E. H. Turner, “Electro-Optic and Piezoelectric Coefficients and Refractive Index of Gallum Phosphide,” J. Appl. Phys. 39, 3337 (1968).
[CrossRef]

Uchida, N.

N. Uchida, N. Niizeki, “Acoustooptic Deflection Materials and Techniques,” Proc. IEEE 61, 1073 (1973).
[CrossRef]

Zehl, O.

J. Rosenbaum, M. Price, R. Bonney, O. Zehl, “Fabrication of Wideband Bragg Cells Using Thermocompression Bonding and Ion Beam Milling,” IEEE Trans. Sonics Ultrason. (1984), ms. in revision.

IEEE Trans. Sonics Ultrason. (1)

I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason. SU-23, 2 (1976).
[CrossRef]

Inst. Phys. Conf. Ser. (1)

M. Tajima, T. Iizuka, “Direct Observation of Imperfections in an LEC GaP Crystal by a Light Scattering Method,” Inst. Phys. Conf. Ser. 33a, 123 (1977).

J. Appl. Phys. (2)

R. W. Dixon, “Photoelastic Properties of Selected Materials and Their Relevance for Applications to Accoustic Light Modulators and Scanners,” J. Appl. Phys. 38, 5149 (1967).
[CrossRef]

D. F. Nelson, E. H. Turner, “Electro-Optic and Piezoelectric Coefficients and Refractive Index of Gallum Phosphide,” J. Appl. Phys. 39, 3337 (1968).
[CrossRef]

J. Mater. Sci. (4)

D. Laister, G. M. Jenkins, “Dislocations and Twins in Czochralski-Grown Gallium Phosphide Single Crystals,” J. Mater. Sci. 5, 862 (1970).
[CrossRef]

J. Hilgarth, “Direct Observation of Dislocations in GaP Crystals,” J. Mater. Sci. 13, 2697 (1978).
[CrossRef]

M. Kitada, “Morphology of Thermal Etch-Pits Formed on GaP Surfaces,” J. Mater. Sci. 15, 82 (1980).
[CrossRef]

M. Kitada, “Defect Distribution near Abraded Surface of III-V Compound Semiconductors,” J. Mater. Sci. 15, 1684 (1980).
[CrossRef]

Proc. IEEE (2)

N. Uchida, N. Niizeki, “Acoustooptic Deflection Materials and Techniques,” Proc. IEEE 61, 1073 (1973).
[CrossRef]

E. G. Spencer, P. V. Lenzo, A. A. Ballman, “Dielectric Materials for Electrooptic, Elastooptic, and Ultrasonic Device Applications,” Proc. IEEE 55, 2074 (1967).
[CrossRef]

Other (4)

J. Rosenbaum, M. Price, R. Bonney, O. Zehl, “Fabrication of Wideband Bragg Cells Using Thermocompression Bonding and Ion Beam Milling,” IEEE Trans. Sonics Ultrason. (1984), ms. in revision.

I. C. Chang, R. Cadieux, G. Petrie, “Wideband Acousto-Optic Bragg Cells,” in Proceedings, 1981 IEEE Ultrasonics Symposium (IEEE, New York, 1981), p. 735.
[CrossRef]

D. L. Hecht, G. W. Petrie, “Acousto-Optic Diffraction from Acoustic Anisotropic Shear Modes in Gallium Phosphide,” in Proceedings, 1980 IEEE Ultrasonics Symposium (IEEE, New York, 1980), p. 474.

B. A. Auld, Acoustic Fields and Waves in Solids, Vol. 1 (Wiley, New York, 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration of the GaP Bragg cell substrates.

Fig. 2
Fig. 2

Two representative bandpasses with fixed laser input angle: (a) showing the effect of rf matching, and (b) the most efficient cell.

Fig. 3
Fig. 3

Deflected optical power as a function of incident laser polarization (S/N 001). Calculations shown as solid lines. Deflected power was measured with a polarizer either along or across the incident polarization direction. The (111) direction lies in the deflection plane.

Fig. 4
Fig. 4

Polarization preservatio for light passing through the substrate along (a) the (1,0,−1) direction, (b) the (−1,2,−1) direction, and (c) the (111) direction. Substrate dimension is d.

Fig. 5
Fig. 5

Deflected optical power from a low frequency test cell (S/N 004) as a function of incident laser polarization.

Tables (3)

Tables Icon

Table I Acoustooptic Constants for GaP

Tables Icon

Table II AO Characteristics of Two Acoustic Modes in GaP

Tables Icon

Table III GaP Bragg Cell Characteristics

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( G i L C L M G M j ) v j = ρ V 2 v i ,
Δ ( 1 n 2 ) i j = p i j k l S k l .
M 2 = n 6 p 2 ρ V 3 ,
η = π 2 2 λ 2 ( n 6 p 2 ρ V 3 ) P a L H ,
Δ f 1.8 n V 2 L f 1 λ ,

Metrics