Abstract

The use of etched nuclear tracks to create a gradient-index antireflective surface on fused silica was investigated. Fission fragments were used as the nuclear particles. The long-wavelength antireflectivity achieved was broadband but modest, possibly because of large index gradients at the internal and external surfaces. Transmission at short wavelengths was limited by diffuse surface scatter. Laser damage thresholds were high. Residual radioactivity was significant but tolerable for some applications. A theory of the index profile of the porous surface was developed.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fleischer, P. B. Price, R. M. Walker, Nuclear Tracks in Solids (U. California Press, Berkeley, 1975).
  2. E. Spiller, I. Haller, R. Feder, J. E. E. Baglin, W. N. Hammer, “Graded-Index AR Surfaces Produced by Ion Implantation on Plastic Materials,” Appl. Opt. 19, 3022 (1980).
    [CrossRef] [PubMed]
  3. R. B. Stephens, G. D. Cody, “Inhomogeneous Surfaces as Selective Solar Absorbers,” Sol. Energy Mater. 1, 397 (1979).
    [CrossRef]
  4. E. V. George, Ed., 1981 Laser Program Annual Report (Lawrence Livermore National Laboratory, 1982).
  5. Westinghouse Research & Development Center, Pittsburgh, under the direction of B. E. Yoldas.
  6. D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972).
  7. R. Jacobsson, “Light Reflection From Films of Continuously Varying Refractive Index,” Prog. Opt. 5, 246 (1966).
  8. D. W. Heikkinen, C. M. Logan, “RTNS-II: Present Status,” IEEE Trans. Nucl. Sci. NS-28, 1490 (1981).
    [CrossRef]
  9. “Guide for Experimenters, Rotating Target Neutron Source-II” (Lawrence Livermore National Laboratory, 1982).
  10. W. A. Pliskin, H. S. Lehman, “Structural Evaluation of Silicon Oxide Films,” J. Electrochem. Soc. 112, 1013 (1965).
    [CrossRef]
  11. F. Rainer, T. F. Deaton, “Laser Damage Thresholds at Short Wavelengths,” Appl. Opt. 21, 1722 (1982).
    [CrossRef] [PubMed]
  12. J. W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon, Oxford, 1975), Part 1.
  13. S. Glasstone, P. J. Dolan, The Effects of Nuclear Weapons (U.S. Departments of Defense and of Energy, Washington, D.C., 1977).
    [CrossRef]
  14. R. K. Iler, The Chemistry of Silica (Wiley, New York, 1979).
  15. F. R. Bacon, F. C. Raggon, “Promotion of Attack on Glass and Silica by Citrate and Other Anions in Neutral Solution,” J. Am. Ceram. Soc. 42, 199 (1959).
    [CrossRef]

1982 (1)

1981 (1)

D. W. Heikkinen, C. M. Logan, “RTNS-II: Present Status,” IEEE Trans. Nucl. Sci. NS-28, 1490 (1981).
[CrossRef]

1980 (1)

1979 (1)

R. B. Stephens, G. D. Cody, “Inhomogeneous Surfaces as Selective Solar Absorbers,” Sol. Energy Mater. 1, 397 (1979).
[CrossRef]

1966 (1)

R. Jacobsson, “Light Reflection From Films of Continuously Varying Refractive Index,” Prog. Opt. 5, 246 (1966).

1965 (1)

W. A. Pliskin, H. S. Lehman, “Structural Evaluation of Silicon Oxide Films,” J. Electrochem. Soc. 112, 1013 (1965).
[CrossRef]

1959 (1)

F. R. Bacon, F. C. Raggon, “Promotion of Attack on Glass and Silica by Citrate and Other Anions in Neutral Solution,” J. Am. Ceram. Soc. 42, 199 (1959).
[CrossRef]

Bacon, F. R.

F. R. Bacon, F. C. Raggon, “Promotion of Attack on Glass and Silica by Citrate and Other Anions in Neutral Solution,” J. Am. Ceram. Soc. 42, 199 (1959).
[CrossRef]

Baglin, J. E. E.

Christian, J. W.

J. W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon, Oxford, 1975), Part 1.

Cody, G. D.

R. B. Stephens, G. D. Cody, “Inhomogeneous Surfaces as Selective Solar Absorbers,” Sol. Energy Mater. 1, 397 (1979).
[CrossRef]

Deaton, T. F.

Dolan, P. J.

S. Glasstone, P. J. Dolan, The Effects of Nuclear Weapons (U.S. Departments of Defense and of Energy, Washington, D.C., 1977).
[CrossRef]

Feder, R.

Fleischer, R. L.

R. L. Fleischer, P. B. Price, R. M. Walker, Nuclear Tracks in Solids (U. California Press, Berkeley, 1975).

Glasstone, S.

S. Glasstone, P. J. Dolan, The Effects of Nuclear Weapons (U.S. Departments of Defense and of Energy, Washington, D.C., 1977).
[CrossRef]

Haller, I.

Hammer, W. N.

Heikkinen, D. W.

D. W. Heikkinen, C. M. Logan, “RTNS-II: Present Status,” IEEE Trans. Nucl. Sci. NS-28, 1490 (1981).
[CrossRef]

Iler, R. K.

R. K. Iler, The Chemistry of Silica (Wiley, New York, 1979).

Jacobsson, R.

R. Jacobsson, “Light Reflection From Films of Continuously Varying Refractive Index,” Prog. Opt. 5, 246 (1966).

Lehman, H. S.

W. A. Pliskin, H. S. Lehman, “Structural Evaluation of Silicon Oxide Films,” J. Electrochem. Soc. 112, 1013 (1965).
[CrossRef]

Logan, C. M.

D. W. Heikkinen, C. M. Logan, “RTNS-II: Present Status,” IEEE Trans. Nucl. Sci. NS-28, 1490 (1981).
[CrossRef]

Pliskin, W. A.

W. A. Pliskin, H. S. Lehman, “Structural Evaluation of Silicon Oxide Films,” J. Electrochem. Soc. 112, 1013 (1965).
[CrossRef]

Price, P. B.

R. L. Fleischer, P. B. Price, R. M. Walker, Nuclear Tracks in Solids (U. California Press, Berkeley, 1975).

Raggon, F. C.

F. R. Bacon, F. C. Raggon, “Promotion of Attack on Glass and Silica by Citrate and Other Anions in Neutral Solution,” J. Am. Ceram. Soc. 42, 199 (1959).
[CrossRef]

Rainer, F.

Spiller, E.

Stephens, R. B.

R. B. Stephens, G. D. Cody, “Inhomogeneous Surfaces as Selective Solar Absorbers,” Sol. Energy Mater. 1, 397 (1979).
[CrossRef]

Walker, R. M.

R. L. Fleischer, P. B. Price, R. M. Walker, Nuclear Tracks in Solids (U. California Press, Berkeley, 1975).

Appl. Opt. (2)

IEEE Trans. Nucl. Sci. (1)

D. W. Heikkinen, C. M. Logan, “RTNS-II: Present Status,” IEEE Trans. Nucl. Sci. NS-28, 1490 (1981).
[CrossRef]

J. Am. Ceram. Soc. (1)

F. R. Bacon, F. C. Raggon, “Promotion of Attack on Glass and Silica by Citrate and Other Anions in Neutral Solution,” J. Am. Ceram. Soc. 42, 199 (1959).
[CrossRef]

J. Electrochem. Soc. (1)

W. A. Pliskin, H. S. Lehman, “Structural Evaluation of Silicon Oxide Films,” J. Electrochem. Soc. 112, 1013 (1965).
[CrossRef]

Prog. Opt. (1)

R. Jacobsson, “Light Reflection From Films of Continuously Varying Refractive Index,” Prog. Opt. 5, 246 (1966).

Sol. Energy Mater. (1)

R. B. Stephens, G. D. Cody, “Inhomogeneous Surfaces as Selective Solar Absorbers,” Sol. Energy Mater. 1, 397 (1979).
[CrossRef]

Other (8)

E. V. George, Ed., 1981 Laser Program Annual Report (Lawrence Livermore National Laboratory, 1982).

Westinghouse Research & Development Center, Pittsburgh, under the direction of B. E. Yoldas.

D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972).

R. L. Fleischer, P. B. Price, R. M. Walker, Nuclear Tracks in Solids (U. California Press, Berkeley, 1975).

“Guide for Experimenters, Rotating Target Neutron Source-II” (Lawrence Livermore National Laboratory, 1982).

J. W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon, Oxford, 1975), Part 1.

S. Glasstone, P. J. Dolan, The Effects of Nuclear Weapons (U.S. Departments of Defense and of Energy, Washington, D.C., 1977).
[CrossRef]

R. K. Iler, The Chemistry of Silica (Wiley, New York, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Theoretical volume fraction of glass F(x) as a function of the distance x from the inner limit of the etched nuclear track surface. Random particle incidence. Curve labels are total thickness d0 in μm. Solid curves are for α = sinθ = VG/VT = 1/6, N0 = 1000 μm−2; dashed curve is for α = 1/3, N0 = 228 μm−2.

Fig. 2
Fig. 2

Nuclear tracks in fused silica, heavily etched with P-etch. Replica scanning electron micrograph. Bar = 1 μm.

Fig. 3
Fig. 3

Nuclear tracks in fused silica, moderately etched with P-etch. Replica scanning electron micrograph. Bar = 1 μm.

Fig. 4
Fig. 4

Surface roughness of an etched nuclear track surface. Track density ~155 m−2, etched track diameter ~0.05 pm. Optical micrograph with oblique reflected illumination. Bar = 10 μm.

Fig. 5
Fig. 5

Nominal (see text) total transmittance of specimens as determined by spectrophotometer.

Fig. 6
Fig. 6

Surface scattering losses (log–log scale). See text and table.

Tables (1)

Tables Icon

Table I Reflectance and Transmission (%) Measured with the Laser System a

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

A ( ζ , ϕ ) = π d 0 2 sin 2 θ cos θ ( cos 2 θ - sin 2 θ ) 3 / 2 ( cos θ - sin θ 1 - sin θ - ζ ) 2 .
ϕ m ( ζ ) = cos - 1 [ sin θ + ( 1 - sin θ ) ζ ] .
P o π N 0 d 2 tan 2 θ .
P n e ( ζ ) = P o ( 1 - ζ ) 2 .
P r e ( ζ ) = P o α + ( 1 - α ) ζ 1 ( 1 - α 2 u 2 - α 2 ) 3 / 2 ( u - α 1 - α - ζ ) 2 d u ,
P r e ( ζ ) = P o ( 1 + α ) ( 1 + α 1 - α ) 1 / 2 { ln ( 1 + 1 - α 2 β + β 2 - α 2 ) - [ 1 + ( β α ) 2 ] ( 1 1 - α 2 - β β 2 - α 2 ) + 2 β ( 1 1 - α 2 - 1 β 2 - α 2 ) } ,
P r e ( 0 ) = P o ( 1 + α ) [ ( 1 + α 1 - α ) 1 / 2 ln 1 + 1 - α 2 α - 2 ] .
d A = ( 1 - A / A o ) d A e .
F = exp [ - P e ( ζ ) ] ,
F n ( x ) = exp [ - ( π N 0 tan 2 θ ) x 2 ] ,             0 x d 0 .
activity ( mR / h ) = 55. × [ ENT density ( μ m - 2 ) ] × [ time ( days ) ] - 1.146 ,

Metrics