Abstract

Thin films (3–6 μm) of poly-(methyl methacrylate) and benzildimethylketal were deposited from solutions in methyl methacrylate or styrene. The formation of refractive-index changes (Δn) by illumination with 366-nm light was studied over a large concentration range of ketal. For low concentrations benzildimethylketal acts mainly as a photoinitiator inducing Δn patterns via polymerization of the residual monomer. In the region of higher ketal contents the Δn formation is caused presumably by a photochemical reaction of benzildimethylketal. After thermal development and fixing, refractive-index changes up to 5 × 10−2 could be obtained.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kopietz, M. D. Lechner, D. G. Steinmeier, “Photochemistry of PMMA,” Makromol. Chem. Rapid Commun. 4, 113 (1983).
    [CrossRef]
  2. R. Ulrich, R. Torge, “Measurement of Thin Film Parameters with a Prism Coupler,” Appl. Opt. 12, 2901 (1973).
    [CrossRef] [PubMed]
  3. R. T. Kersten, “A New Method for Measuring Refractice Index and Thickness of Liquid and Deposited Thim Films,” Opt. Commun. 13, 327 (1975).
    [CrossRef]
  4. H. Franke, H. G. Festl, E. Kritzig, “Light Induced Refractive Index Changes in PMMA Films Doped with Styrene,” Colloid Polym. Sci. 262, 273 (1984).
    [CrossRef]
  5. E. A. Chandross, W. J. Tomlinson, G. D. Aumiller, “Latent-Imaging Photopolymer Systems,” Appl. Opt. 17, 566 (1978).
    [CrossRef] [PubMed]
  6. W. J. Tomlinson, E. A. Chandross, “Organic Photochemical Refractive Index Imaging Recording,” Adv. Photochem. 12, 201 (1980).
    [CrossRef]
  7. E. A. Chandross, C. A. Pryde, W. J. Tomlinson, H. P. Weber, “Photolocking, A New Technique for Fabricating Optical Waveguide Circuits,” Appl. Phys. Lett. 24, 72 (1974).
    [CrossRef]
  8. D. J. Morantz, A. J. C. Wright, “Structures of the Excited States of Benzil and Related Dicarbonyl Molecules,” J. Chem. Phys. 54, 692 (1971).
    [CrossRef]

1984 (1)

H. Franke, H. G. Festl, E. Kritzig, “Light Induced Refractive Index Changes in PMMA Films Doped with Styrene,” Colloid Polym. Sci. 262, 273 (1984).
[CrossRef]

1983 (1)

M. Kopietz, M. D. Lechner, D. G. Steinmeier, “Photochemistry of PMMA,” Makromol. Chem. Rapid Commun. 4, 113 (1983).
[CrossRef]

1980 (1)

W. J. Tomlinson, E. A. Chandross, “Organic Photochemical Refractive Index Imaging Recording,” Adv. Photochem. 12, 201 (1980).
[CrossRef]

1978 (1)

1975 (1)

R. T. Kersten, “A New Method for Measuring Refractice Index and Thickness of Liquid and Deposited Thim Films,” Opt. Commun. 13, 327 (1975).
[CrossRef]

1974 (1)

E. A. Chandross, C. A. Pryde, W. J. Tomlinson, H. P. Weber, “Photolocking, A New Technique for Fabricating Optical Waveguide Circuits,” Appl. Phys. Lett. 24, 72 (1974).
[CrossRef]

1973 (1)

1971 (1)

D. J. Morantz, A. J. C. Wright, “Structures of the Excited States of Benzil and Related Dicarbonyl Molecules,” J. Chem. Phys. 54, 692 (1971).
[CrossRef]

Aumiller, G. D.

Chandross, E. A.

W. J. Tomlinson, E. A. Chandross, “Organic Photochemical Refractive Index Imaging Recording,” Adv. Photochem. 12, 201 (1980).
[CrossRef]

E. A. Chandross, W. J. Tomlinson, G. D. Aumiller, “Latent-Imaging Photopolymer Systems,” Appl. Opt. 17, 566 (1978).
[CrossRef] [PubMed]

E. A. Chandross, C. A. Pryde, W. J. Tomlinson, H. P. Weber, “Photolocking, A New Technique for Fabricating Optical Waveguide Circuits,” Appl. Phys. Lett. 24, 72 (1974).
[CrossRef]

Festl, H. G.

H. Franke, H. G. Festl, E. Kritzig, “Light Induced Refractive Index Changes in PMMA Films Doped with Styrene,” Colloid Polym. Sci. 262, 273 (1984).
[CrossRef]

Franke, H.

H. Franke, H. G. Festl, E. Kritzig, “Light Induced Refractive Index Changes in PMMA Films Doped with Styrene,” Colloid Polym. Sci. 262, 273 (1984).
[CrossRef]

Kersten, R. T.

R. T. Kersten, “A New Method for Measuring Refractice Index and Thickness of Liquid and Deposited Thim Films,” Opt. Commun. 13, 327 (1975).
[CrossRef]

Kopietz, M.

M. Kopietz, M. D. Lechner, D. G. Steinmeier, “Photochemistry of PMMA,” Makromol. Chem. Rapid Commun. 4, 113 (1983).
[CrossRef]

Kritzig, E.

H. Franke, H. G. Festl, E. Kritzig, “Light Induced Refractive Index Changes in PMMA Films Doped with Styrene,” Colloid Polym. Sci. 262, 273 (1984).
[CrossRef]

Lechner, M. D.

M. Kopietz, M. D. Lechner, D. G. Steinmeier, “Photochemistry of PMMA,” Makromol. Chem. Rapid Commun. 4, 113 (1983).
[CrossRef]

Morantz, D. J.

D. J. Morantz, A. J. C. Wright, “Structures of the Excited States of Benzil and Related Dicarbonyl Molecules,” J. Chem. Phys. 54, 692 (1971).
[CrossRef]

Pryde, C. A.

E. A. Chandross, C. A. Pryde, W. J. Tomlinson, H. P. Weber, “Photolocking, A New Technique for Fabricating Optical Waveguide Circuits,” Appl. Phys. Lett. 24, 72 (1974).
[CrossRef]

Steinmeier, D. G.

M. Kopietz, M. D. Lechner, D. G. Steinmeier, “Photochemistry of PMMA,” Makromol. Chem. Rapid Commun. 4, 113 (1983).
[CrossRef]

Tomlinson, W. J.

W. J. Tomlinson, E. A. Chandross, “Organic Photochemical Refractive Index Imaging Recording,” Adv. Photochem. 12, 201 (1980).
[CrossRef]

E. A. Chandross, W. J. Tomlinson, G. D. Aumiller, “Latent-Imaging Photopolymer Systems,” Appl. Opt. 17, 566 (1978).
[CrossRef] [PubMed]

E. A. Chandross, C. A. Pryde, W. J. Tomlinson, H. P. Weber, “Photolocking, A New Technique for Fabricating Optical Waveguide Circuits,” Appl. Phys. Lett. 24, 72 (1974).
[CrossRef]

Torge, R.

Ulrich, R.

Weber, H. P.

E. A. Chandross, C. A. Pryde, W. J. Tomlinson, H. P. Weber, “Photolocking, A New Technique for Fabricating Optical Waveguide Circuits,” Appl. Phys. Lett. 24, 72 (1974).
[CrossRef]

Wright, A. J. C.

D. J. Morantz, A. J. C. Wright, “Structures of the Excited States of Benzil and Related Dicarbonyl Molecules,” J. Chem. Phys. 54, 692 (1971).
[CrossRef]

Adv. Photochem. (1)

W. J. Tomlinson, E. A. Chandross, “Organic Photochemical Refractive Index Imaging Recording,” Adv. Photochem. 12, 201 (1980).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

E. A. Chandross, C. A. Pryde, W. J. Tomlinson, H. P. Weber, “Photolocking, A New Technique for Fabricating Optical Waveguide Circuits,” Appl. Phys. Lett. 24, 72 (1974).
[CrossRef]

Colloid Polym. Sci. (1)

H. Franke, H. G. Festl, E. Kritzig, “Light Induced Refractive Index Changes in PMMA Films Doped with Styrene,” Colloid Polym. Sci. 262, 273 (1984).
[CrossRef]

J. Chem. Phys. (1)

D. J. Morantz, A. J. C. Wright, “Structures of the Excited States of Benzil and Related Dicarbonyl Molecules,” J. Chem. Phys. 54, 692 (1971).
[CrossRef]

Makromol. Chem. Rapid Commun. (1)

M. Kopietz, M. D. Lechner, D. G. Steinmeier, “Photochemistry of PMMA,” Makromol. Chem. Rapid Commun. 4, 113 (1983).
[CrossRef]

Opt. Commun. (1)

R. T. Kersten, “A New Method for Measuring Refractice Index and Thickness of Liquid and Deposited Thim Films,” Opt. Commun. 13, 327 (1975).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorption spectrum of a PMMA/30% benzildimethylketal film deposited from MMA solution on a Herasil glass plate. Illumination is performed at 366-nm wavelength.

Fig. 2
Fig. 2

Achieved refractive-index change difference (Δn) between illuminated and nonilluminated areas as a function of illumination time t1/2 of a PMMA/MMA film with 1% benzildimethylketal.

Fig. 3
Fig. 3

Achieved Δn values for different benzildimethylketal concentrations Ck = mass of ketal/(mass of ketal + mass of PMMA) as a function of illumination time t (left part) and t1/2 (right part). The solid lines are functions of the type Δn = a · t2b with parameters a and b fitted to the experimental data.

Fig. 4
Fig. 4

Parameter a determined from the fitted functions Δn = a · t1/2 + b for various ketal concentrations Ck. The solid line represents the linear fit for Ck < 60%. The value obtained for Ck = 100% (solid dots) is given for comparison.

Fig. 5
Fig. 5

Production of a Δn pattern by illumination and annealing treatment. Left part, refractive indices outside and within the illuminated area during illumination time. Right part, refractive indices as a function of annealing time (100°C).

Fig. 6
Fig. 6

Evaporation of benzildimethylketal from a PMMA/30% ketal/MMA film for various annealing times. The film was deposited on a Herasil glass plate.

Tables (1)

Tables Icon

Table I Refractive Indices of PMMA/Ketal Films After Different Stages of Δn Pattern Formation: After Deposition, After Illumination (Saturation Value), After Annealing Treatment Inside and Outside the Illuminated Area

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C k = mass of ketal mass of ketal + mass of PMMA
Δ n = a · t 1 / 2 + b ,

Metrics