Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kingslake, Optical System Design (Academic, New York, 1983), p. 29.
  2. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), pp. 25, 249, 252.
  3. As pointed out to me by one of the reviewers of the manuscript.
  4. M. P. Keating, “Vergence, Vision, and Geometric Optics,” Am. J. Phys. 43, 766 (1975).
    [CrossRef]
  5. J. R. Meyer-Arendt, Introduction to Classical and Modern Optics (Prentice-Hall, Englewood Cliffs, N.J., 1984), pp. 11, 38.

1975 (1)

M. P. Keating, “Vergence, Vision, and Geometric Optics,” Am. J. Phys. 43, 766 (1975).
[CrossRef]

Keating, M. P.

M. P. Keating, “Vergence, Vision, and Geometric Optics,” Am. J. Phys. 43, 766 (1975).
[CrossRef]

Kingslake, R.

R. Kingslake, Optical System Design (Academic, New York, 1983), p. 29.

Meyer-Arendt, J. R.

J. R. Meyer-Arendt, Introduction to Classical and Modern Optics (Prentice-Hall, Englewood Cliffs, N.J., 1984), pp. 11, 38.

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), pp. 25, 249, 252.

Am. J. Phys. (1)

M. P. Keating, “Vergence, Vision, and Geometric Optics,” Am. J. Phys. 43, 766 (1975).
[CrossRef]

Other (4)

J. R. Meyer-Arendt, Introduction to Classical and Modern Optics (Prentice-Hall, Englewood Cliffs, N.J., 1984), pp. 11, 38.

R. Kingslake, Optical System Design (Academic, New York, 1983), p. 29.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), pp. 25, 249, 252.

As pointed out to me by one of the reviewers of the manuscript.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

All-positive diagram used for the derivation of trigonometric ray tracing formulas.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

sin U = - Q L             sin I = - a R ,
sin U = [ - ( Q + a ) ] / R .
Q = R sin I - R sin U .
Q C = sin I - sin U .
Q C = sin I - sin U .
U - I = ϕ ,
I + ϕ = U .
U - I = U - I .
Initial Q = - ( L sin U ) ,
Q C = sin I - sin U ;
sin I = ( n n ) sin I ,
U - I = U - I ,
Q C = sin I - sin U ;
Q 2 = Q 1 + d sin U 1 ;
final L = - ( final Q ) final sin U ,

Metrics