Abstract

A polycrystalline KRS-5 fiber is experimentally investigated for magnetooptic effects such as the Faraday and Voigt effects, extinction coefficient, and natural depolarization at individual vibrational–rotational transitions of 10.6- and 9.6-μm bands in a CO2 laser. The results are, on the average, a Verdet constant of 0.033 and 0.024 min/cm · G, a Voigt constant of 2.5 × 10−6 min/cm · G2, a natural depolarization of ~0.36 and 0.34 deg/cm, and an extinction coefficient of 1.1 and 1.5 dB/m at 10.6- and 9.6-μm bands, respectively. Both magnetooptic effects are also compared with the theoretical estimates obtained using known parameters. The extinction coefficient follows the inverse-square dependence on the wavelength, supporting the remarks by Harrington and Sparks.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hass, B. Bendow, “Residual Absorption in Infrared Materials,” Appl. Opt. 16, 2882 (1977).
    [CrossRef] [PubMed]
  2. D. A. Pinnow, A. L. Gentile, A. G. Standlee, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
    [CrossRef]
  3. J. H. Garfunkel, R. A. Skogman, R. A. Walterson, in Technical Digest, 1979 IEEE/OSA Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C., 1979), paper 8.1.
  4. T. J. Bridges, J. S. Hasiak, A. R. Strand, “Single-Crystal AgBr Infrared Optical Fibers,” Opt. Lett. 5, 85 (1980).
    [CrossRef] [PubMed]
  5. J. A. Harrington, M. Braunstein, B. Bobbs, R. Braunstein, “Scattering Losses in Single and Polycrystalline Materials for IR Fiber Applications,” Adv. Ceram. 2, 94 (1981).
  6. S. Sakuragi, M. Saito, Y. Kubo, K. Imagawa, H. Kotani, T. Morikawa, J. Shimada, “KRS-5 Optical Fibers Capable of Transmitting High-Power CO2 Laser Beam,” Opt. Lett. 6, 629 (1981).
    [CrossRef] [PubMed]
  7. J. A. Harrington, M. Sparks, “Inverse-Square Wavelength Dependence of Attenuation in Infrared Polycrystalline Fibers,” Opt. Lett. 8, 223 (1983).
    [CrossRef] [PubMed]
  8. H. Sato, E. Tsuchida, S. Sakuragi, “Dispersive Properties of a Flexible KRS-5 Fiber on Magneto-Optical Effects at Individual CO2 Laser Lines,” Opt. Lett. 8, 180 (1983).
    [CrossRef] [PubMed]
  9. Influence of multireflection in the form of the Fabry-Perot configuration is, at the least, evaded by merely tilting the fiber with a small Fresnel number.
  10. W. G. Driscoll, Ed., Handbook of Optics (McGraw Hill, New York, 1978), pp 7–108.
  11. K. Ishiguro, Optics (Kyoritsu, Tokyo, 1962), p. 232 (in Japanese).
  12. M. Sparks, “Explanation of λ−2 Optical Scattering and λ−2 Strehl On-Axis Irradiance Reduction,” J. Opt. Soc. Am. 73, 1249 (1983).
    [CrossRef]
  13. J. A. Harrington, A. G. Standlee, “Attenuation at 10.6 μm in Loaded and Unloaded Polycrystalline KRS-5 Fibers,” Appl. Opt. 22, 3073 (1983).
    [CrossRef] [PubMed]
  14. H. Becquerel, “Sur une interprétation applicable au phénomène de Faraday et au phénomène de Zeeman,” C. R. Acad. Sci. 125, 679 (1897).
  15. K. Fujiwara, S. Yamaguchi, Optics · Electrooptics II (Asakura, Tokyo, 1970), p. 214, in Japanese.
  16. Since the known refractive index in Ref. 10 is limited to five figures after the decimal point, accuracy of the least-squares fit is necessarily limited for evaluating the second derivative d2n/dλ2.

1983 (4)

1981 (2)

J. A. Harrington, M. Braunstein, B. Bobbs, R. Braunstein, “Scattering Losses in Single and Polycrystalline Materials for IR Fiber Applications,” Adv. Ceram. 2, 94 (1981).

S. Sakuragi, M. Saito, Y. Kubo, K. Imagawa, H. Kotani, T. Morikawa, J. Shimada, “KRS-5 Optical Fibers Capable of Transmitting High-Power CO2 Laser Beam,” Opt. Lett. 6, 629 (1981).
[CrossRef] [PubMed]

1980 (1)

1978 (1)

D. A. Pinnow, A. L. Gentile, A. G. Standlee, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

1977 (1)

1897 (1)

H. Becquerel, “Sur une interprétation applicable au phénomène de Faraday et au phénomène de Zeeman,” C. R. Acad. Sci. 125, 679 (1897).

Becquerel, H.

H. Becquerel, “Sur une interprétation applicable au phénomène de Faraday et au phénomène de Zeeman,” C. R. Acad. Sci. 125, 679 (1897).

Bendow, B.

Bobbs, B.

J. A. Harrington, M. Braunstein, B. Bobbs, R. Braunstein, “Scattering Losses in Single and Polycrystalline Materials for IR Fiber Applications,” Adv. Ceram. 2, 94 (1981).

Braunstein, M.

J. A. Harrington, M. Braunstein, B. Bobbs, R. Braunstein, “Scattering Losses in Single and Polycrystalline Materials for IR Fiber Applications,” Adv. Ceram. 2, 94 (1981).

Braunstein, R.

J. A. Harrington, M. Braunstein, B. Bobbs, R. Braunstein, “Scattering Losses in Single and Polycrystalline Materials for IR Fiber Applications,” Adv. Ceram. 2, 94 (1981).

Bridges, T. J.

Fujiwara, K.

K. Fujiwara, S. Yamaguchi, Optics · Electrooptics II (Asakura, Tokyo, 1970), p. 214, in Japanese.

Garfunkel, J. H.

J. H. Garfunkel, R. A. Skogman, R. A. Walterson, in Technical Digest, 1979 IEEE/OSA Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C., 1979), paper 8.1.

Gentile, A. L.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Harrington, J. A.

Hasiak, J. S.

Hass, M.

Imagawa, K.

Ishiguro, K.

K. Ishiguro, Optics (Kyoritsu, Tokyo, 1962), p. 232 (in Japanese).

Kotani, H.

Kubo, Y.

Morikawa, T.

Pinnow, D. A.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Saito, M.

Sakuragi, S.

Sato, H.

Shimada, J.

Skogman, R. A.

J. H. Garfunkel, R. A. Skogman, R. A. Walterson, in Technical Digest, 1979 IEEE/OSA Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C., 1979), paper 8.1.

Sparks, M.

Standlee, A. G.

J. A. Harrington, A. G. Standlee, “Attenuation at 10.6 μm in Loaded and Unloaded Polycrystalline KRS-5 Fibers,” Appl. Opt. 22, 3073 (1983).
[CrossRef] [PubMed]

D. A. Pinnow, A. L. Gentile, A. G. Standlee, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Strand, A. R.

Tsuchida, E.

Walterson, R. A.

J. H. Garfunkel, R. A. Skogman, R. A. Walterson, in Technical Digest, 1979 IEEE/OSA Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C., 1979), paper 8.1.

Yamaguchi, S.

K. Fujiwara, S. Yamaguchi, Optics · Electrooptics II (Asakura, Tokyo, 1970), p. 214, in Japanese.

Adv. Ceram. (1)

J. A. Harrington, M. Braunstein, B. Bobbs, R. Braunstein, “Scattering Losses in Single and Polycrystalline Materials for IR Fiber Applications,” Adv. Ceram. 2, 94 (1981).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. A. Pinnow, A. L. Gentile, A. G. Standlee, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

C. R. Acad. Sci. (1)

H. Becquerel, “Sur une interprétation applicable au phénomène de Faraday et au phénomène de Zeeman,” C. R. Acad. Sci. 125, 679 (1897).

J. Opt. Soc. Am. (1)

Opt. Lett. (4)

Other (6)

Influence of multireflection in the form of the Fabry-Perot configuration is, at the least, evaded by merely tilting the fiber with a small Fresnel number.

W. G. Driscoll, Ed., Handbook of Optics (McGraw Hill, New York, 1978), pp 7–108.

K. Ishiguro, Optics (Kyoritsu, Tokyo, 1962), p. 232 (in Japanese).

J. H. Garfunkel, R. A. Skogman, R. A. Walterson, in Technical Digest, 1979 IEEE/OSA Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C., 1979), paper 8.1.

K. Fujiwara, S. Yamaguchi, Optics · Electrooptics II (Asakura, Tokyo, 1970), p. 214, in Japanese.

Since the known refractive index in Ref. 10 is limited to five figures after the decimal point, accuracy of the least-squares fit is necessarily limited for evaluating the second derivative d2n/dλ2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental schematic diagram for measuring the Faraday effect, where the solenoid magnet is replaced to provide a transverse dc field for the Voigt effect measurement.

Fig. 2
Fig. 2

Extinction coefficients at individual vibrational–rotational transitions of 10.6- and 9.6-μm bands in a CO2 laser.

Fig. 3
Fig. 3

Faraday rotation angle and Verdet constant at individual vibrational–rotational transitions of 10.6- and 9.6-μm bands in a CO2 laser.

Fig. 4
Fig. 4

Faraday rotation angle vs longitudinal dc magnetic field for typical lines of a CO2 laser: (a) 10.6-μm band, (b) 9.6-μm band.

Fig. 5
Fig. 5

Natural depolarization and its variation with transverse magnetic field due to the Voigt effect at individual vibrational–rotational transitions of 10.6- and 9.6-μm bands in a CO2 laser.

Fig. 6
Fig. 6

Voigt effect vs transverse dc magnetic field for typical lines of a CO2 laser: (a) 10.6-μm band, (b) 9.6-μm band.

Fig. 7
Fig. 7

Comparison of the extinction coefficient obtained with the inverse-square wavelength (λ−2) dependence.

Tables (1)

Tables Icon

Table I Specifications of the KRS-5 Fiber Used In the Experiments

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T ( λ ) = [ 1 - R ( λ ) ] 2 exp [ - α ( λ ) l i ] ,
α ( λ ) = ln [ T 1 ( λ ) / T 2 ( λ ) ] / Δ l ,
θ F = V - L / 2 L / 2 H cos 2 ( π x / L ) d x = V H L eff ,
δ N ( l ) = 2 tan - 1 [ I ( 0 ) / I ( 0 ) ] 1 / 2 ,
δ ( H ) = 2 π λ ( n - n ) L eff C H 2 L eff ,
V = - ( e / 2 m c 2 ) γ λ ( d n / d λ ) ,
δ ( H ) = - ( e 2 / 16 π m 2 c 2 ) λ 3 ( d 2 n / d λ 2 ) H 2 L eff ,

Metrics