Abstract

A pulsed coherent CO2 lidar was employed to measure water vapor profiles by the differential absorption lidar (DIAL) technique. Measurements were obtained to ranges of 10 km along horizontal paths and 6 km when the lidar beam angle was elevated. Comparisons with nearby rawinsonde soundings showed fairly good agreement, although a tendency for the lidar to overestimate relative to the sonde was observed. Uncertainties in the individual measurements were attributable primarily to speckle, quantum noise, and atmospheric nonstationarities. The DIAL data set was also used to obtain radial wind velocity measurements at ranges beyond the maximum range of the concentration measurement.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Hardesty, T. R. Lawrence, R. A. Richter, M. J. Post, F. F. Hall, R. M. Huffaker, “Ground-Based Coherent Lidar Measurement of Troposphere and Stratospheric Parameters,” Proc. Soc. Photo-Opt. Instrum. Eng. 415, 85 (1983).
  2. R. M. Hardesty, K. Elmore, M. E. Jackson, Preprints of papers presented at the Twenty-First Conference on Radar Meteorology, Edmonton, Alta., 584 (1983).
  3. M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at π = 10.6 μm,” Appl. Opt. 21, 2442 (1982).
    [CrossRef] [PubMed]
  4. M. J. Post, in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983), paper ThB4.
  5. E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric Water Vapor Measurements with an Infrared (10-μm) Differential Absorption Lidar System,” Appl. Phys. Lett. 28, 542 (1976).
    [CrossRef]
  6. E. R. Murray, J. E. van der Laan, “Remote Measurement of Ethylene Using a CO2 Differential Absorption Lidar,” Appl. Opt. 17, 814 (1978).
    [CrossRef] [PubMed]
  7. K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
    [CrossRef]
  8. D. K. Killinger, N. Menyuk, “Author, add title to the galleys,” QE-17, 1917 (1981).
  9. P. W. Baker, “Atmospheric Water Vapor Differential Absorption Measurements on Vertical Paths with a CO2 Lidar,” Appl. Opt. 22, 2257 (1983).
    [CrossRef] [PubMed]
  10. R. T. Menzies, M. S. Shumate, “Remote Measurements of Ambient Air Pollutants with a Bistatic Laser System,” Appl. Opt. 15, 2080 (1976).
    [CrossRef] [PubMed]
  11. R. T. Menzies, Opt. Eng. 17, 44 (1978).
    [CrossRef]
  12. W. Englisch, W. Wiesemann, J. Boscher, M. Rother, in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer, Berlin, 1983), pp. 38–43.
  13. S. Lundqvist, C.-O. Fält, U. Persson, B. Marthinsson, S. T. Eng, “Air Pollution Monitoring with a Q-Switched CO2-Laser Lidar Using Heterodyne Detection,” Appl. Opt. 20, 2534 (1981).
    [CrossRef] [PubMed]
  14. M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “National Oceanic and Atmospheric Administration’s Pulsed Coherent Infrared Doppler Lidar: Characteristics and Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).
  15. R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, “Characteristics of Coherent Lidar Returns from Calibration Targets and Aerosols,” Appl. Opt. 20, 3763 (1981).
    [CrossRef] [PubMed]
  16. N. Menyuk, D. K. Killinger, “Temporal Correlation Measurements of Pulsed Dual CO2 Lidar Returns,” Opt. Lett. 6, 301 (1981).
    [CrossRef] [PubMed]
  17. W. Schnell, G. Fischer, “Carbon Dioxide Laser Absorption Coefficients of Various Air Pollutants,” Appl. Opt. 14, 2058 (1975).
    [CrossRef] [PubMed]
  18. M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water Vapor Absorption of Carbon Dioxide Laser Radiation,” Appl. Opt. 15, 2480 (1976).
    [CrossRef] [PubMed]
  19. R. J. Nordstrom, M. E. Thomas, J. C. Peterson, E. K. Damon, R. K. Long, “Effects of Oxygen Addition on Pressure-Broadened Water-Vapor Absorption in the 10-μm Region,” Appl. Opt. 17, 2724 (1978).
    [CrossRef] [PubMed]
  20. J. C. Peterson, M. E. Thomas, R. J. Nordstrom, E. K. Damon, R. K. Long, “Water Vapor–Nitrogen Absorption at CO2 Laser Frequencies,” Appl. Opt. 18, 834 (1979).
    [CrossRef] [PubMed]
  21. J. S. Ryan, M. H. Hubert, R. A. Crane, “Water Vapor Absorption at Isotopic CO2 Laser Wavelengths,” Appl. Opt. 22, 711 (1983).
    [CrossRef] [PubMed]
  22. R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-TR-73-0096 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1973).
  23. G. L. Loper, M. A. O’Neill, J. A. Gelbwachs, “Water-Vapor Continuum CO2 Laser Absorption Spectra Between 27°C and −10°C,” Appl. Opt. 22, 3701 (1983).
    [CrossRef] [PubMed]
  24. V. E. Zuev, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, Berlin, 1976), pp. 29–67.
    [CrossRef]
  25. A 1982 version of the AFGL line parameter compilation, obtained subsequent to this analysis, shows a frequency spacing between the water vapor and CO2 lines approximately equal to our adjusted Δv.
  26. R. M. Hardesty, “A Comparison of Heterodyne and Direct Detection CO2 DIAL Systems for Ground-Based Humidity Profiling,” NOAA Tech. Memo. ERL-WPL-64 (U.S. GPO, Washington, D.C., 1980).
  27. E. R. Westwater, from statistics compiled by the NOAA-WPL remote profiling program.
  28. W. E. Hoehne, “Precision of National Weather Service Upper Air Measurements,” NOAA Tech. Memo. T&ED-16 (U.S. GPO, Washington, D.C., 1980).

1983 (4)

1982 (2)

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “National Oceanic and Atmospheric Administration’s Pulsed Coherent Infrared Doppler Lidar: Characteristics and Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at π = 10.6 μm,” Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

1981 (4)

1979 (2)

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

J. C. Peterson, M. E. Thomas, R. J. Nordstrom, E. K. Damon, R. K. Long, “Water Vapor–Nitrogen Absorption at CO2 Laser Frequencies,” Appl. Opt. 18, 834 (1979).
[CrossRef] [PubMed]

1978 (3)

1976 (3)

1975 (1)

Asai, K.

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Baker, P. W.

Benedict, W. S.

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-TR-73-0096 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1973).

Boscher, J.

W. Englisch, W. Wiesemann, J. Boscher, M. Rother, in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer, Berlin, 1983), pp. 38–43.

Burch, D. E.

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-TR-73-0096 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1973).

Calfee, R. F.

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-TR-73-0096 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1973).

Clough, S. A.

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-TR-73-0096 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1973).

Crane, R. A.

Damon, E. K.

Elmore, K.

R. M. Hardesty, K. Elmore, M. E. Jackson, Preprints of papers presented at the Twenty-First Conference on Radar Meteorology, Edmonton, Alta., 584 (1983).

Eng, S. T.

Englisch, W.

W. Englisch, W. Wiesemann, J. Boscher, M. Rother, in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer, Berlin, 1983), pp. 38–43.

Fält, C.-O.

Fischer, G.

Fox, K.

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-TR-73-0096 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1973).

Garing, J. S.

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-TR-73-0096 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1973).

Gelbwachs, J. A.

Hake, R. D.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric Water Vapor Measurements with an Infrared (10-μm) Differential Absorption Lidar System,” Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

Hall, F. F.

R. M. Hardesty, T. R. Lawrence, R. A. Richter, M. J. Post, F. F. Hall, R. M. Huffaker, “Ground-Based Coherent Lidar Measurement of Troposphere and Stratospheric Parameters,” Proc. Soc. Photo-Opt. Instrum. Eng. 415, 85 (1983).

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at π = 10.6 μm,” Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “National Oceanic and Atmospheric Administration’s Pulsed Coherent Infrared Doppler Lidar: Characteristics and Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

Hardesty, R. M.

R. M. Hardesty, T. R. Lawrence, R. A. Richter, M. J. Post, F. F. Hall, R. M. Huffaker, “Ground-Based Coherent Lidar Measurement of Troposphere and Stratospheric Parameters,” Proc. Soc. Photo-Opt. Instrum. Eng. 415, 85 (1983).

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “National Oceanic and Atmospheric Administration’s Pulsed Coherent Infrared Doppler Lidar: Characteristics and Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, “Characteristics of Coherent Lidar Returns from Calibration Targets and Aerosols,” Appl. Opt. 20, 3763 (1981).
[CrossRef] [PubMed]

R. M. Hardesty, “A Comparison of Heterodyne and Direct Detection CO2 DIAL Systems for Ground-Based Humidity Profiling,” NOAA Tech. Memo. ERL-WPL-64 (U.S. GPO, Washington, D.C., 1980).

R. M. Hardesty, K. Elmore, M. E. Jackson, Preprints of papers presented at the Twenty-First Conference on Radar Meteorology, Edmonton, Alta., 584 (1983).

Hawley, J. G.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric Water Vapor Measurements with an Infrared (10-μm) Differential Absorption Lidar System,” Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

Hoehne, W. E.

W. E. Hoehne, “Precision of National Weather Service Upper Air Measurements,” NOAA Tech. Memo. T&ED-16 (U.S. GPO, Washington, D.C., 1980).

Hubert, M. H.

Huffaker, R. M.

R. M. Hardesty, T. R. Lawrence, R. A. Richter, M. J. Post, F. F. Hall, R. M. Huffaker, “Ground-Based Coherent Lidar Measurement of Troposphere and Stratospheric Parameters,” Proc. Soc. Photo-Opt. Instrum. Eng. 415, 85 (1983).

Igarashi, T.

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Itabe, T.

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Jackson, M. E.

R. M. Hardesty, K. Elmore, M. E. Jackson, Preprints of papers presented at the Twenty-First Conference on Radar Meteorology, Edmonton, Alta., 584 (1983).

Keeler, R. J.

Killinger, D. K.

Lawrence, T. R.

R. M. Hardesty, T. R. Lawrence, R. A. Richter, M. J. Post, F. F. Hall, R. M. Huffaker, “Ground-Based Coherent Lidar Measurement of Troposphere and Stratospheric Parameters,” Proc. Soc. Photo-Opt. Instrum. Eng. 415, 85 (1983).

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at π = 10.6 μm,” Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “National Oceanic and Atmospheric Administration’s Pulsed Coherent Infrared Doppler Lidar: Characteristics and Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

Long, R. K.

Loper, G. L.

Lundqvist, S.

Margolis, J. S.

Marthinsson, B.

McClatchey, R. A.

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-TR-73-0096 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1973).

Menyuk, N.

Menzies, R. T.

Murray, E. R.

E. R. Murray, J. E. van der Laan, “Remote Measurement of Ethylene Using a CO2 Differential Absorption Lidar,” Appl. Opt. 17, 814 (1978).
[CrossRef] [PubMed]

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric Water Vapor Measurements with an Infrared (10-μm) Differential Absorption Lidar System,” Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

Nordstrom, R. J.

O’Neill, M. A.

Persson, U.

Peterson, J. C.

Post, M. J.

R. M. Hardesty, T. R. Lawrence, R. A. Richter, M. J. Post, F. F. Hall, R. M. Huffaker, “Ground-Based Coherent Lidar Measurement of Troposphere and Stratospheric Parameters,” Proc. Soc. Photo-Opt. Instrum. Eng. 415, 85 (1983).

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at π = 10.6 μm,” Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “National Oceanic and Atmospheric Administration’s Pulsed Coherent Infrared Doppler Lidar: Characteristics and Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, “Characteristics of Coherent Lidar Returns from Calibration Targets and Aerosols,” Appl. Opt. 20, 3763 (1981).
[CrossRef] [PubMed]

M. J. Post, in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983), paper ThB4.

Richter, R. A.

R. M. Hardesty, T. R. Lawrence, R. A. Richter, M. J. Post, F. F. Hall, R. M. Huffaker, “Ground-Based Coherent Lidar Measurement of Troposphere and Stratospheric Parameters,” Proc. Soc. Photo-Opt. Instrum. Eng. 415, 85 (1983).

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at π = 10.6 μm,” Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “National Oceanic and Atmospheric Administration’s Pulsed Coherent Infrared Doppler Lidar: Characteristics and Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, “Characteristics of Coherent Lidar Returns from Calibration Targets and Aerosols,” Appl. Opt. 20, 3763 (1981).
[CrossRef] [PubMed]

Rosengren, L.-G.

Rother, M.

W. Englisch, W. Wiesemann, J. Boscher, M. Rother, in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer, Berlin, 1983), pp. 38–43.

Rothman, L. S.

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-TR-73-0096 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1973).

Ryan, J. S.

Schnell, W.

Shumate, M. S.

Thomas, M. E.

van der Laan, J. E.

E. R. Murray, J. E. van der Laan, “Remote Measurement of Ethylene Using a CO2 Differential Absorption Lidar,” Appl. Opt. 17, 814 (1978).
[CrossRef] [PubMed]

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric Water Vapor Measurements with an Infrared (10-μm) Differential Absorption Lidar System,” Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

Westwater, E. R.

E. R. Westwater, from statistics compiled by the NOAA-WPL remote profiling program.

Wiesemann, W.

W. Englisch, W. Wiesemann, J. Boscher, M. Rother, in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer, Berlin, 1983), pp. 38–43.

Zuev, V. E.

V. E. Zuev, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, Berlin, 1976), pp. 29–67.
[CrossRef]

Appl. Opt. (12)

R. T. Menzies, M. S. Shumate, “Remote Measurements of Ambient Air Pollutants with a Bistatic Laser System,” Appl. Opt. 15, 2080 (1976).
[CrossRef] [PubMed]

M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water Vapor Absorption of Carbon Dioxide Laser Radiation,” Appl. Opt. 15, 2480 (1976).
[CrossRef] [PubMed]

E. R. Murray, J. E. van der Laan, “Remote Measurement of Ethylene Using a CO2 Differential Absorption Lidar,” Appl. Opt. 17, 814 (1978).
[CrossRef] [PubMed]

R. J. Nordstrom, M. E. Thomas, J. C. Peterson, E. K. Damon, R. K. Long, “Effects of Oxygen Addition on Pressure-Broadened Water-Vapor Absorption in the 10-μm Region,” Appl. Opt. 17, 2724 (1978).
[CrossRef] [PubMed]

J. C. Peterson, M. E. Thomas, R. J. Nordstrom, E. K. Damon, R. K. Long, “Water Vapor–Nitrogen Absorption at CO2 Laser Frequencies,” Appl. Opt. 18, 834 (1979).
[CrossRef] [PubMed]

S. Lundqvist, C.-O. Fält, U. Persson, B. Marthinsson, S. T. Eng, “Air Pollution Monitoring with a Q-Switched CO2-Laser Lidar Using Heterodyne Detection,” Appl. Opt. 20, 2534 (1981).
[CrossRef] [PubMed]

R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, “Characteristics of Coherent Lidar Returns from Calibration Targets and Aerosols,” Appl. Opt. 20, 3763 (1981).
[CrossRef] [PubMed]

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at π = 10.6 μm,” Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

J. S. Ryan, M. H. Hubert, R. A. Crane, “Water Vapor Absorption at Isotopic CO2 Laser Wavelengths,” Appl. Opt. 22, 711 (1983).
[CrossRef] [PubMed]

P. W. Baker, “Atmospheric Water Vapor Differential Absorption Measurements on Vertical Paths with a CO2 Lidar,” Appl. Opt. 22, 2257 (1983).
[CrossRef] [PubMed]

G. L. Loper, M. A. O’Neill, J. A. Gelbwachs, “Water-Vapor Continuum CO2 Laser Absorption Spectra Between 27°C and −10°C,” Appl. Opt. 22, 3701 (1983).
[CrossRef] [PubMed]

W. Schnell, G. Fischer, “Carbon Dioxide Laser Absorption Coefficients of Various Air Pollutants,” Appl. Opt. 14, 2058 (1975).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric Water Vapor Measurements with an Infrared (10-μm) Differential Absorption Lidar System,” Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Author, add title to the galleys (1)

D. K. Killinger, N. Menyuk, “Author, add title to the galleys,” QE-17, 1917 (1981).

Opt. Eng. (1)

R. T. Menzies, Opt. Eng. 17, 44 (1978).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

R. M. Hardesty, T. R. Lawrence, R. A. Richter, M. J. Post, F. F. Hall, R. M. Huffaker, “Ground-Based Coherent Lidar Measurement of Troposphere and Stratospheric Parameters,” Proc. Soc. Photo-Opt. Instrum. Eng. 415, 85 (1983).

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “National Oceanic and Atmospheric Administration’s Pulsed Coherent Infrared Doppler Lidar: Characteristics and Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

Other (9)

V. E. Zuev, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, Berlin, 1976), pp. 29–67.
[CrossRef]

A 1982 version of the AFGL line parameter compilation, obtained subsequent to this analysis, shows a frequency spacing between the water vapor and CO2 lines approximately equal to our adjusted Δv.

R. M. Hardesty, “A Comparison of Heterodyne and Direct Detection CO2 DIAL Systems for Ground-Based Humidity Profiling,” NOAA Tech. Memo. ERL-WPL-64 (U.S. GPO, Washington, D.C., 1980).

E. R. Westwater, from statistics compiled by the NOAA-WPL remote profiling program.

W. E. Hoehne, “Precision of National Weather Service Upper Air Measurements,” NOAA Tech. Memo. T&ED-16 (U.S. GPO, Washington, D.C., 1980).

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-TR-73-0096 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1973).

W. Englisch, W. Wiesemann, J. Boscher, M. Rother, in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer, Berlin, 1983), pp. 38–43.

R. M. Hardesty, K. Elmore, M. E. Jackson, Preprints of papers presented at the Twenty-First Conference on Radar Meteorology, Edmonton, Alta., 584 (1983).

M. J. Post, in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983), paper ThB4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Estimated variations in absorption cross section on the R(20) laser line vs temperature calculated from Eq. (4) for three pressures.

Fig. 2
Fig. 2

Profiles of backscattered power at R(20) and R(18) wavelengths for horizontal DIAL measurements made on 23 Mar. 1983.

Fig. 3
Fig. 3

Ratios of backscattered power from two ranges vs range for 23 Mar. measurements.

Fig. 4
Fig. 4

Water vapor concentration estimates vs range for 23 Mar. measurements. Long-dashed line shows mean concentration measured at ground station ~25 km away.

Fig. 5
Fig. 5

Profiles of backscattered power for DIAL measurements made 4 May 1983 with lidar pointing 20° above horizontal.

Fig. 6
Fig. 6

Ratios of backscattered powers for four of the 4 May measurements. Measurement gate length was 1 km.

Fig. 7
Fig. 7

Water vapor concentration profiles calculated from 4 May measurements. The long-dashed line is the mean of the five individual measurements. Moisture readings from NWS rawinsondes are plotted for comparison.

Fig. 8
Fig. 8

Comparison of concentration measurement standard deviation estimated from 4 May measurement set (solid line) with the predicted standard deviation due only to speckle and quantum-noise effects (dashed line). Ringing in measured standard deviation is due to effect of 0.5-km smoothing filter used in the data analysis.

Fig. 9
Fig. 9

Sequence of measurement profiles showing growth and dissipation of apparent backscatter inhomogeneity at the 6-km range.

Fig. 10
Fig. 10

Mean and standard deviation of single-shot radial wind speed estimates calculated from R(20) and R(18) returns in 4 May data set. Observed differences in mean values for the two cases are due primarily to atmospheric variability (measurements were separated by 4 min).

Tables (2)

Tables Icon

Table I NOAA Lidar System Parameters

Tables Icon

Table II Water Vapor Absorption Cross Section on R(20) Laser Line Calculated from Reported Measurements

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P ^ ( i δ R ) = X 2 ( 2 i δ R c ) + Y 2 ( 2 i δ R c ) ,
ρ ^ ( R ) = 1 2 K ¯ m Δ R { ln [ r ^ a ( R ) ] - ln [ r ^ r ( R ) ] } ,
r ^ a ( R ) = P ^ a ( R - Δ R 2 ) P ^ a ( R + Δ R 2 ) , r ^ r ( R ) = P ^ r ( R - Δ R 2 ) P ^ r ( R + Δ R 2 ) .
K ¯ ( T ) = K ¯ ( T 0 ) ( T 0 T ) exp [ 1.439 E ( 1 T 0 - 1 T ) ] ,
K ( T , p ) = K ( T 0 , p 0 ) α ( T , p ) [ π ( Δ ν ) 2 + α 2 ( T 0 , p 0 ) ] α ( T 0 , p 0 ) [ π ( Δ ν ) 2 + α 2 ( T , p ) ] × exp [ 1.139 E ( 1 T 0 - 1 T ) ] ,
α ( T , p ) = α ( T 0 , p 0 ) ( p p 0 ) ( T 0 T ) 0.5 .
σ ρ ^ = 1 2 K ¯ m Δ R N 1 / 2 [ i = 1 2 ( 1 m s + 2 m c · SNR i + 1 m n SNR i 2 ) ] 1 / 2 ,
m s = - R f ( τ ) d τ - R s 2 ( τ ) R f ( τ ) d τ , m n = - R f ( τ ) d τ - R n 2 ( τ ) R f ( τ ) d τ , m c = - R f ( τ ) d τ - R f ( τ ) R s ( τ ) R n ( τ ) d τ .
[ β a ( R ) β a ( R + Δ R ) - β r ( R ) β r ( R + Δ R ) ] + ( γ ¯ a - γ ¯ w ) Δ R = 0 ,

Metrics