Abstract

A detailed computer simulation of the Windsat global wind measuring process has been developed and used to establish error limits as a function of design parameters. Studies were conducted for a Windsat research system in a 300- and an 800-km orbit. Wind measuring errors were <2 m sec−1 in the troposphere for the recommended set of parameters. Our study results indicate the feasibility of measuring global winds from a space platform using a coherent laser radar.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. National Academy of Sciences, “Technological and Scientific Opportunities for Improved Weather and Hydrological Services in the Coming Decade,” Select Committee on the National Weather Service (1980).
  2. R. M. Huffaker, “Laser Doppler Detection Systems for Gas Velocity Measurement,” Appl. Opt. 9, 1026 (1970).
    [CrossRef] [PubMed]
  3. T. R. Lawrence, D. J. Wilson, C. E. Craven, I. P. Jones, R. M. Huffaker, J. A. L. Thomson, “A Laser Velocimeter for Remote Wind Sensing,” Rev. Sci. Instrum. 43, 512 (1972).
    [CrossRef]
  4. R. M. Huffaker, “CO2 Laser Doppler Systems for the Measurement of Atmospheric Winds and Turbulence,” Atmos. Tech. (National Center for Atmospheric Research, winter1974–1975), p. 71.
  5. R. M. Huffaker, H. B. Jeffreys, E. A. Weaver, J. B. Bilbro, “Development of a Laser Doppler System for the Detection, Tracking and Measurement of Aircraft Wake Vortices,” FAA Report FAA-RD-74-213 (1975).
  6. M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442 (1982.
    [CrossRef] [PubMed]
  7. R. M. Huffaker, Ed., “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System,” NOAA Tech. Memo ERL WPL-37 (U.S. GPO, Washington, D.C., 1978).
  8. R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Priestley, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).
  9. J. A. Thomson, J. C. S. Meng, “A Feasibility Study for the Detection of Upper Atmospheric Winds Using a Ground Based Laser Doppler Velocimeter,” Physical Dynamics, Inc., Berkeley, Calif., Report PD-75-042, Contract NAS8-28984 (1975).
  10. S. F. Clifford, S. Wandzura, “Monostatic Heterodyne Lidar Performance: the Effect of the Turbulent Atmosphere,” Appl. Opt. 20, 514 (1981).
    [CrossRef] [PubMed]
  11. K. Ya. Kondratyev, I. Ya. Badinov, G. A. Nikiolsky, E. V. Prokopenko, “Modeling of Real Profiles of Aerosol Attenuation,” Tr. Gl. Geofiz. Obs. 262 L (1976).
  12. S. L. Valley, Ed., Handbook of Geophysics and Space Environments (Air Force Cambridge Research Laboratories, 1965).
  13. N. K. Vinnechenko, “The Kinetic Energy Spectrum in the Free Atmosphere from 1 Second to 5 Years,” Tellus 22, 158 (1970).
    [CrossRef]
  14. S. L. Barnes, D. K. Lilly, “Covariance Analysis of Severe Storm Environments,” AMS, Preprints of Ninth Conference on Severe Local Storms, Boston, Mass.1975.
  15. J. W. Kaufman, Ed., “Terrestrial Environment (Climatic) Criteria for Use in Aerospace Vehicle Development, 1977 revision,” NASA Tech. Memo. 78118 (1977).
  16. J. A. Thomson, F. P. Boynton, “Development of Design Procedures for Coherent Lidar Measurements of Atmospheric Winds,” June (revised November) 1977, Final Report, Contract NOAA-03-7-022-35106, Physical Dynamics, Berkeley, Calif. (1977).
  17. D. Zrnic, “Spectral Moment Estimated from Correlated Pulse Pairs,” IEEE Trans. Aerosp. Electron. Syst. AES-7, 344 (1977).
    [CrossRef]
  18. I. A. Lund, M. D. Shanklin, “Universal Methods for Estimating Probabilities of Cloud-Free Lines-of-Sights Through the Atmosphere,” J. Appl. Meteorol. 12, 28 (1973).
    [CrossRef]
  19. C. Schutz, W. L. Gates, “Supplemental Global Climatic Data: January and July,” Rand Corp., R-915/1-ARPA and R-1029/1-ARPA (1974).

1982 (1)

1981 (1)

1980 (1)

National Academy of Sciences, “Technological and Scientific Opportunities for Improved Weather and Hydrological Services in the Coming Decade,” Select Committee on the National Weather Service (1980).

1977 (1)

D. Zrnic, “Spectral Moment Estimated from Correlated Pulse Pairs,” IEEE Trans. Aerosp. Electron. Syst. AES-7, 344 (1977).
[CrossRef]

1976 (1)

K. Ya. Kondratyev, I. Ya. Badinov, G. A. Nikiolsky, E. V. Prokopenko, “Modeling of Real Profiles of Aerosol Attenuation,” Tr. Gl. Geofiz. Obs. 262 L (1976).

1973 (1)

I. A. Lund, M. D. Shanklin, “Universal Methods for Estimating Probabilities of Cloud-Free Lines-of-Sights Through the Atmosphere,” J. Appl. Meteorol. 12, 28 (1973).
[CrossRef]

1972 (1)

T. R. Lawrence, D. J. Wilson, C. E. Craven, I. P. Jones, R. M. Huffaker, J. A. L. Thomson, “A Laser Velocimeter for Remote Wind Sensing,” Rev. Sci. Instrum. 43, 512 (1972).
[CrossRef]

1970 (2)

R. M. Huffaker, “Laser Doppler Detection Systems for Gas Velocity Measurement,” Appl. Opt. 9, 1026 (1970).
[CrossRef] [PubMed]

N. K. Vinnechenko, “The Kinetic Energy Spectrum in the Free Atmosphere from 1 Second to 5 Years,” Tellus 22, 158 (1970).
[CrossRef]

Badinov, I. Ya.

K. Ya. Kondratyev, I. Ya. Badinov, G. A. Nikiolsky, E. V. Prokopenko, “Modeling of Real Profiles of Aerosol Attenuation,” Tr. Gl. Geofiz. Obs. 262 L (1976).

Barnes, S. L.

S. L. Barnes, D. K. Lilly, “Covariance Analysis of Severe Storm Environments,” AMS, Preprints of Ninth Conference on Severe Local Storms, Boston, Mass.1975.

Bilbro, J. B.

R. M. Huffaker, H. B. Jeffreys, E. A. Weaver, J. B. Bilbro, “Development of a Laser Doppler System for the Detection, Tracking and Measurement of Aircraft Wake Vortices,” FAA Report FAA-RD-74-213 (1975).

Boynton, F. P.

J. A. Thomson, F. P. Boynton, “Development of Design Procedures for Coherent Lidar Measurements of Atmospheric Winds,” June (revised November) 1977, Final Report, Contract NOAA-03-7-022-35106, Physical Dynamics, Berkeley, Calif. (1977).

Clifford, S. F.

Craven, C. E.

T. R. Lawrence, D. J. Wilson, C. E. Craven, I. P. Jones, R. M. Huffaker, J. A. L. Thomson, “A Laser Velocimeter for Remote Wind Sensing,” Rev. Sci. Instrum. 43, 512 (1972).
[CrossRef]

Gates, W. L.

C. Schutz, W. L. Gates, “Supplemental Global Climatic Data: January and July,” Rand Corp., R-915/1-ARPA and R-1029/1-ARPA (1974).

Hall, F. F.

Huffaker, R. M.

T. R. Lawrence, D. J. Wilson, C. E. Craven, I. P. Jones, R. M. Huffaker, J. A. L. Thomson, “A Laser Velocimeter for Remote Wind Sensing,” Rev. Sci. Instrum. 43, 512 (1972).
[CrossRef]

R. M. Huffaker, “Laser Doppler Detection Systems for Gas Velocity Measurement,” Appl. Opt. 9, 1026 (1970).
[CrossRef] [PubMed]

R. M. Huffaker, “CO2 Laser Doppler Systems for the Measurement of Atmospheric Winds and Turbulence,” Atmos. Tech. (National Center for Atmospheric Research, winter1974–1975), p. 71.

R. M. Huffaker, H. B. Jeffreys, E. A. Weaver, J. B. Bilbro, “Development of a Laser Doppler System for the Detection, Tracking and Measurement of Aircraft Wake Vortices,” FAA Report FAA-RD-74-213 (1975).

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Priestley, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

Jeffreys, H. B.

R. M. Huffaker, H. B. Jeffreys, E. A. Weaver, J. B. Bilbro, “Development of a Laser Doppler System for the Detection, Tracking and Measurement of Aircraft Wake Vortices,” FAA Report FAA-RD-74-213 (1975).

Jones, I. P.

T. R. Lawrence, D. J. Wilson, C. E. Craven, I. P. Jones, R. M. Huffaker, J. A. L. Thomson, “A Laser Velocimeter for Remote Wind Sensing,” Rev. Sci. Instrum. 43, 512 (1972).
[CrossRef]

Keeler, R. J.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Priestley, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

Kondratyev, K. Ya.

K. Ya. Kondratyev, I. Ya. Badinov, G. A. Nikiolsky, E. V. Prokopenko, “Modeling of Real Profiles of Aerosol Attenuation,” Tr. Gl. Geofiz. Obs. 262 L (1976).

Korrell, J. A.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Priestley, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

Lawrence, T. R.

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442 (1982.
[CrossRef] [PubMed]

T. R. Lawrence, D. J. Wilson, C. E. Craven, I. P. Jones, R. M. Huffaker, J. A. L. Thomson, “A Laser Velocimeter for Remote Wind Sensing,” Rev. Sci. Instrum. 43, 512 (1972).
[CrossRef]

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Priestley, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

Lilly, D. K.

S. L. Barnes, D. K. Lilly, “Covariance Analysis of Severe Storm Environments,” AMS, Preprints of Ninth Conference on Severe Local Storms, Boston, Mass.1975.

Lund, I. A.

I. A. Lund, M. D. Shanklin, “Universal Methods for Estimating Probabilities of Cloud-Free Lines-of-Sights Through the Atmosphere,” J. Appl. Meteorol. 12, 28 (1973).
[CrossRef]

Meng, J. C. S.

J. A. Thomson, J. C. S. Meng, “A Feasibility Study for the Detection of Upper Atmospheric Winds Using a Ground Based Laser Doppler Velocimeter,” Physical Dynamics, Inc., Berkeley, Calif., Report PD-75-042, Contract NAS8-28984 (1975).

Nikiolsky, G. A.

K. Ya. Kondratyev, I. Ya. Badinov, G. A. Nikiolsky, E. V. Prokopenko, “Modeling of Real Profiles of Aerosol Attenuation,” Tr. Gl. Geofiz. Obs. 262 L (1976).

Post, M. J.

Priestley, M. J.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Priestley, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

Prokopenko, E. V.

K. Ya. Kondratyev, I. Ya. Badinov, G. A. Nikiolsky, E. V. Prokopenko, “Modeling of Real Profiles of Aerosol Attenuation,” Tr. Gl. Geofiz. Obs. 262 L (1976).

Richter, R. A.

Schutz, C.

C. Schutz, W. L. Gates, “Supplemental Global Climatic Data: January and July,” Rand Corp., R-915/1-ARPA and R-1029/1-ARPA (1974).

Shanklin, M. D.

I. A. Lund, M. D. Shanklin, “Universal Methods for Estimating Probabilities of Cloud-Free Lines-of-Sights Through the Atmosphere,” J. Appl. Meteorol. 12, 28 (1973).
[CrossRef]

Thomson, J. A.

J. A. Thomson, F. P. Boynton, “Development of Design Procedures for Coherent Lidar Measurements of Atmospheric Winds,” June (revised November) 1977, Final Report, Contract NOAA-03-7-022-35106, Physical Dynamics, Berkeley, Calif. (1977).

J. A. Thomson, J. C. S. Meng, “A Feasibility Study for the Detection of Upper Atmospheric Winds Using a Ground Based Laser Doppler Velocimeter,” Physical Dynamics, Inc., Berkeley, Calif., Report PD-75-042, Contract NAS8-28984 (1975).

Thomson, J. A. L.

T. R. Lawrence, D. J. Wilson, C. E. Craven, I. P. Jones, R. M. Huffaker, J. A. L. Thomson, “A Laser Velocimeter for Remote Wind Sensing,” Rev. Sci. Instrum. 43, 512 (1972).
[CrossRef]

Vinnechenko, N. K.

N. K. Vinnechenko, “The Kinetic Energy Spectrum in the Free Atmosphere from 1 Second to 5 Years,” Tellus 22, 158 (1970).
[CrossRef]

Wandzura, S.

Weaver, E. A.

R. M. Huffaker, H. B. Jeffreys, E. A. Weaver, J. B. Bilbro, “Development of a Laser Doppler System for the Detection, Tracking and Measurement of Aircraft Wake Vortices,” FAA Report FAA-RD-74-213 (1975).

Wilson, D. J.

T. R. Lawrence, D. J. Wilson, C. E. Craven, I. P. Jones, R. M. Huffaker, J. A. L. Thomson, “A Laser Velocimeter for Remote Wind Sensing,” Rev. Sci. Instrum. 43, 512 (1972).
[CrossRef]

Zrnic, D.

D. Zrnic, “Spectral Moment Estimated from Correlated Pulse Pairs,” IEEE Trans. Aerosp. Electron. Syst. AES-7, 344 (1977).
[CrossRef]

Appl. Opt. (3)

IEEE Trans. Aerosp. Electron. Syst. (1)

D. Zrnic, “Spectral Moment Estimated from Correlated Pulse Pairs,” IEEE Trans. Aerosp. Electron. Syst. AES-7, 344 (1977).
[CrossRef]

J. Appl. Meteorol. (1)

I. A. Lund, M. D. Shanklin, “Universal Methods for Estimating Probabilities of Cloud-Free Lines-of-Sights Through the Atmosphere,” J. Appl. Meteorol. 12, 28 (1973).
[CrossRef]

Rev. Sci. Instrum. (1)

T. R. Lawrence, D. J. Wilson, C. E. Craven, I. P. Jones, R. M. Huffaker, J. A. L. Thomson, “A Laser Velocimeter for Remote Wind Sensing,” Rev. Sci. Instrum. 43, 512 (1972).
[CrossRef]

Select Committee on the National Weather Service (1)

National Academy of Sciences, “Technological and Scientific Opportunities for Improved Weather and Hydrological Services in the Coming Decade,” Select Committee on the National Weather Service (1980).

Tellus (1)

N. K. Vinnechenko, “The Kinetic Energy Spectrum in the Free Atmosphere from 1 Second to 5 Years,” Tellus 22, 158 (1970).
[CrossRef]

Tr. Gl. Geofiz. Obs. (1)

K. Ya. Kondratyev, I. Ya. Badinov, G. A. Nikiolsky, E. V. Prokopenko, “Modeling of Real Profiles of Aerosol Attenuation,” Tr. Gl. Geofiz. Obs. 262 L (1976).

Other (10)

S. L. Valley, Ed., Handbook of Geophysics and Space Environments (Air Force Cambridge Research Laboratories, 1965).

C. Schutz, W. L. Gates, “Supplemental Global Climatic Data: January and July,” Rand Corp., R-915/1-ARPA and R-1029/1-ARPA (1974).

S. L. Barnes, D. K. Lilly, “Covariance Analysis of Severe Storm Environments,” AMS, Preprints of Ninth Conference on Severe Local Storms, Boston, Mass.1975.

J. W. Kaufman, Ed., “Terrestrial Environment (Climatic) Criteria for Use in Aerospace Vehicle Development, 1977 revision,” NASA Tech. Memo. 78118 (1977).

J. A. Thomson, F. P. Boynton, “Development of Design Procedures for Coherent Lidar Measurements of Atmospheric Winds,” June (revised November) 1977, Final Report, Contract NOAA-03-7-022-35106, Physical Dynamics, Berkeley, Calif. (1977).

R. M. Huffaker, “CO2 Laser Doppler Systems for the Measurement of Atmospheric Winds and Turbulence,” Atmos. Tech. (National Center for Atmospheric Research, winter1974–1975), p. 71.

R. M. Huffaker, H. B. Jeffreys, E. A. Weaver, J. B. Bilbro, “Development of a Laser Doppler System for the Detection, Tracking and Measurement of Aircraft Wake Vortices,” FAA Report FAA-RD-74-213 (1975).

R. M. Huffaker, Ed., “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System,” NOAA Tech. Memo ERL WPL-37 (U.S. GPO, Washington, D.C., 1978).

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Priestley, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

J. A. Thomson, J. C. S. Meng, “A Feasibility Study for the Detection of Upper Atmospheric Winds Using a Ground Based Laser Doppler Velocimeter,” Physical Dynamics, Inc., Berkeley, Calif., Report PD-75-042, Contract NAS8-28984 (1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1
Fig. 1

Concept of measuring global winds with spaceborne coherent lidar. Windsat uses a conical scan and averages lidar shots over a large volume (for example, 200 × 200 × 20 km).

Fig. 2
Fig. 2

Organization of satellite lidar computer simulation. The entire globe is simulated, one patch at a time.

Fig. 3
Fig. 3

Top view of uniform density shot pattern for four patches on one side of the operational satellite ground track. The patches are numbered 1–4 outward from the satellite track. The arrows represent the shots that penetrate each patch as the satellite orbits. The tail of the arrow denotes the 20-km level; the tip of the arrow denotes ground intercept.

Fig. 4
Fig. 4

Top view of uniform density shot pattern for two patches on one side of the Shuttle ground track.

Fig. 5
Fig. 5

Total one-way absorption exp(−k0) for various isotopic CO2 laser lines for propagation through a plane-parallel mid-latitude atmosphere at 62° nadir angle and forward looking 45° azimuth angle. The 13C16O2 lines show minimun absorption.

Fig. 6
Fig. 6

Two-way absorption profiles for three CO2 laser lines propagating through various model atmospheres at 62° nadir angle, 15° azimuth.

Fig. 7
Fig. 7

Number of pulses penetrating clouds in three sectors of a mid-latitude winter cyclonic storm on 26 Jan. 1977. Cloud data supplied by ETAC.

Fig. 8
Fig. 8

Profiles of the aerosol backscatter coefficient β obtained in the study. Schotland (personal communication) and GASP data are also shown.

Fig. 9
Fig. 9

Smooth 2-D fluctuation field. Mean = 0 and variance = 4.1 m2 sec−2.

Fig. 10
Fig. 10

Disturbed 2-d wind fluctuation field. Mean = 0 and variance = 11 m2 sec−2.

Fig. 11
Fig. 11

One-dimensional mean wind profiles for smooth and disturbed cases.

Fig. 12
Fig. 12

Estimated along-track and cross-track rms errors for Shuttle base parameters in patch 2.

Fig. 13
Fig. 13

Range of rms wind error for Shuttle base case parameters for patches 1 and 2 combined.

Fig. 14
Fig. 14

Range of rms wind error for operational base case parameters in four patches (cross-track component of patch 1 removed because of poor satellite viewing geometry).

Fig. 15
Fig. 15

Height dependence of rms cross-track (patch 2) radial velocity estimation errors as a function of wind shear. All parameters except the input wind field are set to Shuttle base line values.

Fig. 16
Fig. 16

Wind bias error (m sec−1) in cross-track wind component caused by adding uniform 1 m sec−1 vertical velocity when vertical velocity has been assumed to be zero.

Fig. 17
Fig. 17

National Weather Service surface weather map for 07.00 EST on 26 Jan. 1977. Superimposed squares show cold (C), frontal (F), and warm (W) sectors from which statistical clould data were derived.

Fig. 18
Fig. 18

RMS wind error in cross-track estimates in patch 2 for the no-cloud condition and the cold, frontal, and warm sectors shown in Fig. 17 for operational base parameters.

Fig. 19
Fig. 19

Estimated rms wind cross-track error in patch 2 with and without clouds (high cirrus and dense middle clouds) using tropical atmosphere model and operational base parameters.

Fig. 20
Fig. 20

Height dependence of rms cross-track radial velocity estimation errors in patch 2 as a function of rms long-term pointing error σ L . All parameters except σ L are set to Shuttle base line values. Curve (1), σ L ⩽ 50 μrad; curve (2), σ L = 100 μrad; curve (3), σ L = 250 μrad.

Fig. 21
Fig. 21

Height dependence of rms cross-track radial velocity estimation errors in patch 2 as a function of rms short-term pointing error σ s . All parameters except σ s are set to Shuttle base line values. Curve (1), σ s ⩽ 2 μrad; curve (2), σ s = 4 μrad; curve 3), σ s = 7 μrad; curve (4), σ s = 10 μrad.

Fig. 22
Fig. 22

Height dependence of rms cross-track radial velocity estimation errors in patch 2 as a function of rms local oscillator jitter within the round-trip time, σLO. All parameters except σLO are set to Shuttle base line values. Curve (1), σLO ⩽ 25 kHz; curve (2), σLO = 100 kHz; curve (3), σLO = 250 kHz.

Tables (3)

Tables Icon

Table I CFLOS Probabilities for Independent Layers

Tables Icon

Table II Global Cumulative Averages of Increases In Measurement Errors Due to Clouds

Tables Icon

Table III Parameter Base Values for the Shuttle and Operational Simulation Cases

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D eff = 2 ( r - 2 + r a - 2 ) 1 / 2 ,
r a = 0.0581 λ 6 / 5 z z vol Z sat C n 2 S 5 / 3 d S - 3 / 5 / ( 1 + ρ 12 ) 3 / 5 .
SNR = π η J β c τ D 2 K A ( R ) 8 h ν [ R 2 ( 1 + D 2 / 4 r a 2 ) + ( π D 2 / 4 λ ) 2 ( 1 - R / f ) 2 ] ,
α r = λ σ v 2 τ 1 4 π 2 ρ SNR w + ( 1 8 π 2 ρ SNR w 2 ) 1 / 2 p ,

Metrics