Abstract

A coherent CO2 lidar system has been modified to record various states of polarization of the backscattered radiation. Methods for measuring the degree of polarization in the backscattered radiation as well as the optical thickness of clouds are described and demonstrated successfully.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. I. Carswell, in Clouds, Their Formation, Optical Properties, and Effects (Academic, New York, 1981), pp. 363–406.
    [CrossRef]
  2. A. I. Carswell, C. M. R. Platt, Ref. 1, pp. 407–435.
  3. J. D. Houston, A. I. Carswell, Appl. Opt. 17, 614 (1978).
    [CrossRef] [PubMed]
  4. M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, Appl. Opt. 21, 2442 (1982).
    [CrossRef] [PubMed]
  5. M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).
  6. M. J. Post, R. A. Richter, R. J. Keeler, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Appl. Opt. 19, 2828 (1980).
    [CrossRef] [PubMed]
  7. A. Gross, Appl. Opt. 22, 3031 (1983).
    [CrossRef] [PubMed]
  8. R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941).
    [CrossRef]
  9. M. J. Post, “Atmospheric Aerosol Profiles at CO2 Wavelengths,” paper presented at the Second Topical Meeting on Coherent Laser Radar, Aspen, Colo. (1983).
  10. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), pp. 40–59.
  11. S. Asano, M. Sato, Appl. Opt. 19, 962 (1980).
    [CrossRef] [PubMed]
  12. C. M. R. Platt, J. Atmos. Sci. 30, 1191 (1973).
    [CrossRef]
  13. D. J. Varley, A. A. Barnes, “Cirrus Particle Distribution Study, Part 4,” AFGL-TR-79-0134, Air Force Systems Command, Hanscom AFB, Mass. (1979).
  14. I. D. Cohen, “Cirrus Particle Distribution Study, Part 8,” AFGL-TR-81-0316, Air Force Systems Command, Hanscom AFB, Mass (1981).

1983 (1)

1982 (2)

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

1980 (2)

1978 (1)

1973 (1)

C. M. R. Platt, J. Atmos. Sci. 30, 1191 (1973).
[CrossRef]

1941 (1)

Asano, S.

Barnes, A. A.

D. J. Varley, A. A. Barnes, “Cirrus Particle Distribution Study, Part 4,” AFGL-TR-79-0134, Air Force Systems Command, Hanscom AFB, Mass. (1979).

Carswell, A. I.

J. D. Houston, A. I. Carswell, Appl. Opt. 17, 614 (1978).
[CrossRef] [PubMed]

A. I. Carswell, in Clouds, Their Formation, Optical Properties, and Effects (Academic, New York, 1981), pp. 363–406.
[CrossRef]

A. I. Carswell, C. M. R. Platt, Ref. 1, pp. 407–435.

Cohen, I. D.

I. D. Cohen, “Cirrus Particle Distribution Study, Part 8,” AFGL-TR-81-0316, Air Force Systems Command, Hanscom AFB, Mass (1981).

Gross, A.

Hall, F. F.

Hardesty, R. M.

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

M. J. Post, R. A. Richter, R. J. Keeler, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Appl. Opt. 19, 2828 (1980).
[CrossRef] [PubMed]

Houston, J. D.

Jones, R. C.

Keeler, R. J.

Lawrence, T. R.

Platt, C. M. R.

C. M. R. Platt, J. Atmos. Sci. 30, 1191 (1973).
[CrossRef]

A. I. Carswell, C. M. R. Platt, Ref. 1, pp. 407–435.

Post, M. J.

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

M. J. Post, R. A. Richter, R. J. Keeler, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Appl. Opt. 19, 2828 (1980).
[CrossRef] [PubMed]

M. J. Post, “Atmospheric Aerosol Profiles at CO2 Wavelengths,” paper presented at the Second Topical Meeting on Coherent Laser Radar, Aspen, Colo. (1983).

Richter, R. A.

Sato, M.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), pp. 40–59.

Varley, D. J.

D. J. Varley, A. A. Barnes, “Cirrus Particle Distribution Study, Part 4,” AFGL-TR-79-0134, Air Force Systems Command, Hanscom AFB, Mass. (1979).

Appl. Opt. (5)

J. Atmos. Sci. (1)

C. M. R. Platt, J. Atmos. Sci. 30, 1191 (1973).
[CrossRef]

J. Opt. Soc. Am. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

Other (6)

M. J. Post, “Atmospheric Aerosol Profiles at CO2 Wavelengths,” paper presented at the Second Topical Meeting on Coherent Laser Radar, Aspen, Colo. (1983).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), pp. 40–59.

A. I. Carswell, in Clouds, Their Formation, Optical Properties, and Effects (Academic, New York, 1981), pp. 363–406.
[CrossRef]

A. I. Carswell, C. M. R. Platt, Ref. 1, pp. 407–435.

D. J. Varley, A. A. Barnes, “Cirrus Particle Distribution Study, Part 4,” AFGL-TR-79-0134, Air Force Systems Command, Hanscom AFB, Mass. (1979).

I. D. Cohen, “Cirrus Particle Distribution Study, Part 8,” AFGL-TR-81-0316, Air Force Systems Command, Hanscom AFB, Mass (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Time series of the lidar parallel polarization returns from cirrus clouds.

Fig. 2
Fig. 2

Total β profiles for parallel polarization (solid line) and cross polarization (dashed line) for the cloud system in Fig. 1.

Fig. 3
Fig. 3

Depolarization ratio δ (solid line) and backscatter coefficient β (dashed line) for the cloud system in Fig. 1.

Tables (1)

Tables Icon

Table I Polarization Properties of Transmitted Pulse and Receiver System for Different Retardation Plates and Their Optical Axis Setting

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

I = E x 2 + E y 2 ,
M = E x 2 - E y 2 ,
C = 2 Re E x · E y * ,
S = 2 Im E x · E y * ,
SNR = η ( I d / h ν B ) ,
I ¯ = exp ( - 2 α R ) π a 2 R 2 c τ 2 K ¯ ¯ ( F ¯ ¯ I ¯ i ) ,
F ¯ ¯ = [ a 1 b 1 b 3 b 5 b 1 a 2 b 4 b 6 - b 3 - b 4 a 3 b 2 b 5 b 6 - b 2 a 4 ] .
I = 1 / 2 ( a 1 - a 4 ) .
I = 1 / 2 ( a 1 + a 3 ) .
I = 1 / 2 ( a 1 - a 2 ) .
F ¯ ¯ = [ a 1 0 0 b 5 0 a 2 0 0 0 0 - a 2 0 b 5 0 0 a 4 ] .
δ = I / I .
τ ( z ) = z b z σ ( z ) d z ,
τ A = τ ( h ) ,
exp ( - 2 τ A ) = ( S / S 0 ) ,
k ( z ) = β ( z ) / σ ( z ) ,
B ( z ) = β ( z ) exp [ - 2 τ ( z ) ] ,
γ = z b h B ( z ) d z ,
γ = k 2 [ 1 - exp ( - 2 τ A ) ] .

Metrics