Abstract

Measurements of atmospheric aerosol backscatter coefficients, using a coherent CO2 lidar at 9.25- and 10.6-μm wavelengths, are described. Vertical profiles of the volume backscatter coefficient β have been measured to a 10-km altitude over the Pasadena, Calif., region. These measurements indicate a wide range of variability in β both in and above the local boundary layer. Certain profiles also indicate a significant enhancement in β at the 9.25-μm wavelength compared with β at the 10.6-μm wavelength, which possibly indicates a major contribution to the volume backscatter from ammonium sulfate aerosol particles.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Murray, “Remote Measurement of Gases Using Differential-Absorption Lidar,” Opt. Eng. 17, 30 (1978).
  2. K. W. Rothe, “Monitoring of Various Atmospheric Constituents Using a C.W. Chemical Hydrogen/Deuterium Laser and a Pulsed Carbon Dioxide Laser,” Radio Electron. Eng. 50, 567 (1980).
    [CrossRef]
  3. K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
    [CrossRef]
  4. T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, “Feasibility and Design Considerations of a Global Wind Sensing Coherent Infrared Radar (Windsat),” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).
  5. J. W. Bilbro, “Atmospheric Laser Doppler Velocimetry: an Overview,” Opt. Eng. 19, 533 (1980).
    [CrossRef]
  6. M. Halem, “GCM Simulation Studies on the Relative Importance of Wind Observing Systems for Numerical Weather Prediction,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983).
  7. R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
    [CrossRef]
  8. M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442 (1982).
    [CrossRef] [PubMed]
  9. M. J. Post, “Atmospheric Aerosol Profiles at CO2 Wavelengths,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983).
  10. W. D. Jones, “Airborne and Ground-Based Measurement of Atmospheric Aerosol Backscatter at CO2 Laser Wavelengths,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983).
  11. O. Steinvall, G. Bolander, T. Claesson, “Measuring Atmospheric Scattering and Extinction at 10 μm Using a CO2 Lidar,” Appl. Opt. 22, 1688 (1983).
    [CrossRef] [PubMed]
  12. G. K. Yue, G. S. Kent, U. O. Farrukh, A. Deepak, “Modeling Atmospheric Aerosol Backscatter at CO2 Laser Wavelengths. Effects of Changes in Wavelength and Ambient Conditions,” Appl. Opt. 22, 1671 (1983).
    [CrossRef] [PubMed]
  13. T. Nevitt, “Variations in IR Backscattering Properties,” Second Multiagency Workshop on Atmospheric Backscatter at IR Wavelengths [NASA Marshall Space Flight Center Document EB 21 (205-83) 23–75, May1983].
  14. H. T. Mudd, C. H. Kruger, E. R. Murray, “Measurement of IR Laser Backscatter Spectra from Sulfuric Acid and Ammonium Sulfate Aerosols,” Appl. Opt. 21, 1146 (1982).
    [CrossRef] [PubMed]
  15. R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).
  16. M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Optogalvanic Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron. QE-18, 19 (1982).
    [CrossRef]
  17. M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Spectrophone Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron. QE-19, 1234 (1983).
    [CrossRef]
  18. M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target Reflectance Measurements for Calibration of Lidar Atmospheric Backscatter Data,” Appl. Opt. 22, 2619 (1983).
    [CrossRef] [PubMed]
  19. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-72-0497 ERP 411 (1972).
  20. L. S. Rothman, R. R. Gamache, A. Barbe, A. Goldman, J. R. Gillis, L. R. Brown, R. A. Toth, J.-M. Flaud, C. Camy-Peyret, “AFGL Atmospheric Absorption Line Parameters Compilation: 1982 Edition,” Appl. Opt. 22, 2247 (1983).
    [CrossRef] [PubMed]
  21. F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).
  22. R. A. McClatchey, A. P. D’Agati, “Atmospheric Transmission of Laser Radiation: Computer Code LASER,” AFGL-TR-78-0029 (1978).
  23. G. S. Kent, G. K. Yue, U. O. Farrukh, A. Deepak, “Modeling Atmospheric Aerosol Backscatter at CO2 Laser Wavelength. 2: Modeled Values in the Atmosphere,” Appl. Opt. 22, 1666 (1983).
    [CrossRef] [PubMed]

1983

1982

1981

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, “Feasibility and Design Considerations of a Global Wind Sensing Coherent Infrared Radar (Windsat),” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).

1980

J. W. Bilbro, “Atmospheric Laser Doppler Velocimetry: an Overview,” Opt. Eng. 19, 533 (1980).
[CrossRef]

K. W. Rothe, “Monitoring of Various Atmospheric Constituents Using a C.W. Chemical Hydrogen/Deuterium Laser and a Pulsed Carbon Dioxide Laser,” Radio Electron. Eng. 50, 567 (1980).
[CrossRef]

1979

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

1978

E. R. Murray, “Remote Measurement of Gases Using Differential-Absorption Lidar,” Opt. Eng. 17, 30 (1978).

Abreu, L. W.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

Asai, K.

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Barbe, A.

Barrett, E. W.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Bilbro, J. W.

J. W. Bilbro, “Atmospheric Laser Doppler Velocimetry: an Overview,” Opt. Eng. 19, 533 (1980).
[CrossRef]

Bolander, G.

Brown, L. R.

Camy-Peyret, C.

Chetwynd, J. H.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

Claesson, T.

Cupp, R. E.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

D’Agati, A. P.

R. A. McClatchey, A. P. D’Agati, “Atmospheric Transmission of Laser Radiation: Computer Code LASER,” AFGL-TR-78-0029 (1978).

Deepak, A.

Derr, V. E.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Farrukh, U. O.

Fenn, R. W.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-72-0497 ERP 411 (1972).

Flamant, P. H.

Flaud, J.-M.

Gallery, W. O.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

Gamache, R. R.

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-72-0497 ERP 411 (1972).

Gillis, J. R.

Goldman, A.

Halem, M.

M. Halem, “GCM Simulation Studies on the Relative Importance of Wind Observing Systems for Numerical Weather Prediction,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983).

Hall, F. F.

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, “Feasibility and Design Considerations of a Global Wind Sensing Coherent Infrared Radar (Windsat),” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).

Haner, D. A.

Huffaker, R. M.

T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, “Feasibility and Design Considerations of a Global Wind Sensing Coherent Infrared Radar (Windsat),” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

Igarashi, T.

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Itabe, T.

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Jones, W. D.

W. D. Jones, “Airborne and Ground-Based Measurement of Atmospheric Aerosol Backscatter at CO2 Laser Wavelengths,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983).

Kavaya, M. J.

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Spectrophone Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron. QE-19, 1234 (1983).
[CrossRef]

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target Reflectance Measurements for Calibration of Lidar Atmospheric Backscatter Data,” Appl. Opt. 22, 2619 (1983).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Optogalvanic Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron. QE-18, 19 (1982).
[CrossRef]

Keeler, R. J.

T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, “Feasibility and Design Considerations of a Global Wind Sensing Coherent Infrared Radar (Windsat),” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

Kent, G. S.

Kneizys, F. X.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

Korrell, J. A.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

Kruger, C. H.

Lawrence, T. R.

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, “Feasibility and Design Considerations of a Global Wind Sensing Coherent Infrared Radar (Windsat),” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-72-0497 ERP 411 (1972).

R. A. McClatchey, A. P. D’Agati, “Atmospheric Transmission of Laser Radiation: Computer Code LASER,” AFGL-TR-78-0029 (1978).

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

Menzies, R. T.

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Spectrophone Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron. QE-19, 1234 (1983).
[CrossRef]

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target Reflectance Measurements for Calibration of Lidar Atmospheric Backscatter Data,” Appl. Opt. 22, 2619 (1983).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Optogalvanic Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron. QE-18, 19 (1982).
[CrossRef]

Mudd, H. T.

Murray, E. R.

Nevitt, T.

T. Nevitt, “Variations in IR Backscattering Properties,” Second Multiagency Workshop on Atmospheric Backscatter at IR Wavelengths [NASA Marshall Space Flight Center Document EB 21 (205-83) 23–75, May1983].

Oppenheim, U. P.

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Spectrophone Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron. QE-19, 1234 (1983).
[CrossRef]

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target Reflectance Measurements for Calibration of Lidar Atmospheric Backscatter Data,” Appl. Opt. 22, 2619 (1983).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Optogalvanic Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron. QE-18, 19 (1982).
[CrossRef]

Post, M. J.

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, “Feasibility and Design Considerations of a Global Wind Sensing Coherent Infrared Radar (Windsat),” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

M. J. Post, “Atmospheric Aerosol Profiles at CO2 Wavelengths,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983).

Priestly, J. T.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

Pueschel, R. F.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Richter, R. A.

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, “Feasibility and Design Considerations of a Global Wind Sensing Coherent Infrared Radar (Windsat),” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).

Rothe, K. W.

K. W. Rothe, “Monitoring of Various Atmospheric Constituents Using a C.W. Chemical Hydrogen/Deuterium Laser and a Pulsed Carbon Dioxide Laser,” Radio Electron. Eng. 50, 567 (1980).
[CrossRef]

Rothman, L. S.

Schwiesow, R. L.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-72-0497 ERP 411 (1972).

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

Shettle, E. P.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

Sinclair, P. C.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Steinvall, O.

Toth, R. A.

Volz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-72-0497 ERP 411 (1972).

Yue, G. K.

Appl. Opt.

Appl. Phys. Lett.

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

IEEE J. Quantum Electron.

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Optogalvanic Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron. QE-18, 19 (1982).
[CrossRef]

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Spectrophone Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron. QE-19, 1234 (1983).
[CrossRef]

J. Appl. Meteorol.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Opt. Eng.

E. R. Murray, “Remote Measurement of Gases Using Differential-Absorption Lidar,” Opt. Eng. 17, 30 (1978).

J. W. Bilbro, “Atmospheric Laser Doppler Velocimetry: an Overview,” Opt. Eng. 19, 533 (1980).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, “Feasibility and Design Considerations of a Global Wind Sensing Coherent Infrared Radar (Windsat),” Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).

Radio Electron. Eng.

K. W. Rothe, “Monitoring of Various Atmospheric Constituents Using a C.W. Chemical Hydrogen/Deuterium Laser and a Pulsed Carbon Dioxide Laser,” Radio Electron. Eng. 50, 567 (1980).
[CrossRef]

Other

M. J. Post, “Atmospheric Aerosol Profiles at CO2 Wavelengths,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983).

W. D. Jones, “Airborne and Ground-Based Measurement of Atmospheric Aerosol Backscatter at CO2 Laser Wavelengths,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983).

T. Nevitt, “Variations in IR Backscattering Properties,” Second Multiagency Workshop on Atmospheric Backscatter at IR Wavelengths [NASA Marshall Space Flight Center Document EB 21 (205-83) 23–75, May1983].

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-72-0497 ERP 411 (1972).

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

R. A. McClatchey, A. P. D’Agati, “Atmospheric Transmission of Laser Radiation: Computer Code LASER,” AFGL-TR-78-0029 (1978).

M. Halem, “GCM Simulation Studies on the Relative Importance of Wind Observing Systems for Numerical Weather Prediction,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Coherent TEA CO2 lidar block diagram.

Fig. 2
Fig. 2

Molecular attenuation and aerosol extinction scaling factor profiles which are used above the boundary layer for computation of the total attenuation integral in the lidar equation. The attenuation at the 9.11-μm wavelength, which is not significantly affected by atmospheric carbon dioxide, is shown for comparison.

Fig. 3
Fig. 3

Percentage error examples in β computation vs altitude due to incorrect modeling of temperature and relative humidity above the boundary layer. These two cases correspond to the use of the mid-latitude summer model to compute attenuation in the lidar equation, when the actual profiles correspond to either the mid-latitude winter or tropical model conditions.

Fig. 4
Fig. 4

Atmospheric transmission spectrum (not including water vapor continuum or aerosol attenuation) in the region near the CO2 9R(24) line at 1081.087 cm−1. The bulge on the high-frequency side of the atmospheric CO2 absorption line is due to a number of closely spaced ozone lines.

Fig. 5
Fig. 5

Flow diagram depicting the main components in the lidar calibration and β profile computation.

Fig. 6
Fig. 6

Aerosol backscatter profiles at the 10.6-μm wavelength, computed from lidar data taken along a +30° elevation slant path.

Fig. 7
Fig. 7

Aerosol backscatter profiles at 9.25- and 10.6-μm wavelengths from vertical path lidar data taken on 20 May 1983.

Fig. 8
Fig. 8

Aerosol backscatter profiles at 9.25- and 10.6-μm wavelengths from vertical path data taken on 21 July 1983.

Tables (1)

Tables Icon

Table I Summary of CO2 Lidar Characteristics

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P s ( t ) = P T ( t - 2 R s c ) · ρ * · A R s 2 · η · O ( R s ) × exp [ - 2 0 R s α s ( r ) d r ] ,
P b ( t ) = [ 0 τ P T ( t ) d t ] · β ( R b ) · A R b 2 · c 2 · η · O ( R b ) × exp [ - 2 0 R b α b ( r ) d r ] .

Metrics