Abstract

The influence of clouds and ground fog on CO2 cw laser Doppler wind measurements in the atmosphere is discussed. There is an influence if the focal volume of a laser Doppler anemometer is outside the cloud or fog region. Limitations of the application of the LDA to routine remote wind sensing are presented.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Sonnenschein, F. A. Horrigan, “Signal-to-noise Relationships for Coaxial System that Heterodyne Backscatter from the Atmosphere,” Appl. Opt. 10, 1600 (1971).
    [Crossref] [PubMed]
  2. J. W. Bilbro, H. B. Jeffreys, E. A. Weaver, R. M. Huffaker, G. D. Graig, R. W. George, P. J. Marrero, “Laser Doppler Velocimeter Wake Vortex Tests,” NASA TMX-64988 (1976).
  3. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).
  4. D. C. Burnham, J. N. Hallok, I. H. Tombach, M. R. Brashears, M. R. Barber, “Ground Based Measurements of the Wake Vortex Characteristics of a B 747 Aircraft in Various Configurations,” FAA-RD-78-146 (1978).
  5. G. S. Kent, G. K. Yue, U. O. Farrukh, A. Deepak, “Modeling Atmospheric Aerosol Backscatter at CO2 Laser Wavelengths,” Appl. Opt. 22, 1655 (1983).
    [Crossref] [PubMed]
  6. F. Köpp, H. Herrmann, Ch. Werner, R. L. Schwiesow, F. Bachstein, Erstellung und Erprobung des Laser-Doppler-Anemometers zur Fernmessung des Windes. DFVLR-FB-83-11 (1983) (wiss. Berichtswesen der DFVLR, Postfach 90 60 58, 5000 Köln 90, FRG).
  7. F. Köpp, F. Bachstein, C. Werner, “On-line Data system for a cw-laser Doppler Anemometer,” Appl. Opt. 23, 2488 (1983).
    [Crossref]
  8. C. G. Little, “Status of remote sensing of the troposphere,” Bull. Am. Meteorol. Soc. 53, 936 (1972).
    [Crossref]
  9. R. M. Huffaker, T. R. Lawrence, R. S. Keeler, M. J. Post, J. T. Priestley, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part 1,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C.1980).
  10. D. Lorenz, E. Schmidt, “Methods of Stereoscopic Cloud Analysis from Space,” DFVLR-Mitt. 79-04 (1979) (wiss. Berichtswesen der DFVLR, Postfach 906058, 5000 Köln 90).

1983 (3)

G. S. Kent, G. K. Yue, U. O. Farrukh, A. Deepak, “Modeling Atmospheric Aerosol Backscatter at CO2 Laser Wavelengths,” Appl. Opt. 22, 1655 (1983).
[Crossref] [PubMed]

F. Köpp, H. Herrmann, Ch. Werner, R. L. Schwiesow, F. Bachstein, Erstellung und Erprobung des Laser-Doppler-Anemometers zur Fernmessung des Windes. DFVLR-FB-83-11 (1983) (wiss. Berichtswesen der DFVLR, Postfach 90 60 58, 5000 Köln 90, FRG).

F. Köpp, F. Bachstein, C. Werner, “On-line Data system for a cw-laser Doppler Anemometer,” Appl. Opt. 23, 2488 (1983).
[Crossref]

1979 (1)

D. Lorenz, E. Schmidt, “Methods of Stereoscopic Cloud Analysis from Space,” DFVLR-Mitt. 79-04 (1979) (wiss. Berichtswesen der DFVLR, Postfach 906058, 5000 Köln 90).

1978 (1)

D. C. Burnham, J. N. Hallok, I. H. Tombach, M. R. Brashears, M. R. Barber, “Ground Based Measurements of the Wake Vortex Characteristics of a B 747 Aircraft in Various Configurations,” FAA-RD-78-146 (1978).

1976 (1)

J. W. Bilbro, H. B. Jeffreys, E. A. Weaver, R. M. Huffaker, G. D. Graig, R. W. George, P. J. Marrero, “Laser Doppler Velocimeter Wake Vortex Tests,” NASA TMX-64988 (1976).

1972 (1)

C. G. Little, “Status of remote sensing of the troposphere,” Bull. Am. Meteorol. Soc. 53, 936 (1972).
[Crossref]

1971 (1)

Bachstein, F.

F. Köpp, H. Herrmann, Ch. Werner, R. L. Schwiesow, F. Bachstein, Erstellung und Erprobung des Laser-Doppler-Anemometers zur Fernmessung des Windes. DFVLR-FB-83-11 (1983) (wiss. Berichtswesen der DFVLR, Postfach 90 60 58, 5000 Köln 90, FRG).

F. Köpp, F. Bachstein, C. Werner, “On-line Data system for a cw-laser Doppler Anemometer,” Appl. Opt. 23, 2488 (1983).
[Crossref]

Barber, M. R.

D. C. Burnham, J. N. Hallok, I. H. Tombach, M. R. Brashears, M. R. Barber, “Ground Based Measurements of the Wake Vortex Characteristics of a B 747 Aircraft in Various Configurations,” FAA-RD-78-146 (1978).

Bilbro, J. W.

J. W. Bilbro, H. B. Jeffreys, E. A. Weaver, R. M. Huffaker, G. D. Graig, R. W. George, P. J. Marrero, “Laser Doppler Velocimeter Wake Vortex Tests,” NASA TMX-64988 (1976).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

Brashears, M. R.

D. C. Burnham, J. N. Hallok, I. H. Tombach, M. R. Brashears, M. R. Barber, “Ground Based Measurements of the Wake Vortex Characteristics of a B 747 Aircraft in Various Configurations,” FAA-RD-78-146 (1978).

Burnham, D. C.

D. C. Burnham, J. N. Hallok, I. H. Tombach, M. R. Brashears, M. R. Barber, “Ground Based Measurements of the Wake Vortex Characteristics of a B 747 Aircraft in Various Configurations,” FAA-RD-78-146 (1978).

Deepak, A.

Farrukh, U. O.

George, R. W.

J. W. Bilbro, H. B. Jeffreys, E. A. Weaver, R. M. Huffaker, G. D. Graig, R. W. George, P. J. Marrero, “Laser Doppler Velocimeter Wake Vortex Tests,” NASA TMX-64988 (1976).

Graig, G. D.

J. W. Bilbro, H. B. Jeffreys, E. A. Weaver, R. M. Huffaker, G. D. Graig, R. W. George, P. J. Marrero, “Laser Doppler Velocimeter Wake Vortex Tests,” NASA TMX-64988 (1976).

Hallok, J. N.

D. C. Burnham, J. N. Hallok, I. H. Tombach, M. R. Brashears, M. R. Barber, “Ground Based Measurements of the Wake Vortex Characteristics of a B 747 Aircraft in Various Configurations,” FAA-RD-78-146 (1978).

Herrmann, H.

F. Köpp, H. Herrmann, Ch. Werner, R. L. Schwiesow, F. Bachstein, Erstellung und Erprobung des Laser-Doppler-Anemometers zur Fernmessung des Windes. DFVLR-FB-83-11 (1983) (wiss. Berichtswesen der DFVLR, Postfach 90 60 58, 5000 Köln 90, FRG).

Horrigan, F. A.

Huffaker, R. M.

J. W. Bilbro, H. B. Jeffreys, E. A. Weaver, R. M. Huffaker, G. D. Graig, R. W. George, P. J. Marrero, “Laser Doppler Velocimeter Wake Vortex Tests,” NASA TMX-64988 (1976).

R. M. Huffaker, T. R. Lawrence, R. S. Keeler, M. J. Post, J. T. Priestley, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part 1,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C.1980).

Jeffreys, H. B.

J. W. Bilbro, H. B. Jeffreys, E. A. Weaver, R. M. Huffaker, G. D. Graig, R. W. George, P. J. Marrero, “Laser Doppler Velocimeter Wake Vortex Tests,” NASA TMX-64988 (1976).

Keeler, R. S.

R. M. Huffaker, T. R. Lawrence, R. S. Keeler, M. J. Post, J. T. Priestley, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part 1,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C.1980).

Kent, G. S.

Köpp, F.

F. Köpp, F. Bachstein, C. Werner, “On-line Data system for a cw-laser Doppler Anemometer,” Appl. Opt. 23, 2488 (1983).
[Crossref]

F. Köpp, H. Herrmann, Ch. Werner, R. L. Schwiesow, F. Bachstein, Erstellung und Erprobung des Laser-Doppler-Anemometers zur Fernmessung des Windes. DFVLR-FB-83-11 (1983) (wiss. Berichtswesen der DFVLR, Postfach 90 60 58, 5000 Köln 90, FRG).

Korrell, J. A.

R. M. Huffaker, T. R. Lawrence, R. S. Keeler, M. J. Post, J. T. Priestley, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part 1,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C.1980).

Lawrence, T. R.

R. M. Huffaker, T. R. Lawrence, R. S. Keeler, M. J. Post, J. T. Priestley, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part 1,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C.1980).

Little, C. G.

C. G. Little, “Status of remote sensing of the troposphere,” Bull. Am. Meteorol. Soc. 53, 936 (1972).
[Crossref]

Lorenz, D.

D. Lorenz, E. Schmidt, “Methods of Stereoscopic Cloud Analysis from Space,” DFVLR-Mitt. 79-04 (1979) (wiss. Berichtswesen der DFVLR, Postfach 906058, 5000 Köln 90).

Marrero, P. J.

J. W. Bilbro, H. B. Jeffreys, E. A. Weaver, R. M. Huffaker, G. D. Graig, R. W. George, P. J. Marrero, “Laser Doppler Velocimeter Wake Vortex Tests,” NASA TMX-64988 (1976).

Post, M. J.

R. M. Huffaker, T. R. Lawrence, R. S. Keeler, M. J. Post, J. T. Priestley, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part 1,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C.1980).

Priestley, J. T.

R. M. Huffaker, T. R. Lawrence, R. S. Keeler, M. J. Post, J. T. Priestley, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part 1,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C.1980).

Schmidt, E.

D. Lorenz, E. Schmidt, “Methods of Stereoscopic Cloud Analysis from Space,” DFVLR-Mitt. 79-04 (1979) (wiss. Berichtswesen der DFVLR, Postfach 906058, 5000 Köln 90).

Schwiesow, R. L.

F. Köpp, H. Herrmann, Ch. Werner, R. L. Schwiesow, F. Bachstein, Erstellung und Erprobung des Laser-Doppler-Anemometers zur Fernmessung des Windes. DFVLR-FB-83-11 (1983) (wiss. Berichtswesen der DFVLR, Postfach 90 60 58, 5000 Köln 90, FRG).

Sonnenschein, C. M.

Tombach, I. H.

D. C. Burnham, J. N. Hallok, I. H. Tombach, M. R. Brashears, M. R. Barber, “Ground Based Measurements of the Wake Vortex Characteristics of a B 747 Aircraft in Various Configurations,” FAA-RD-78-146 (1978).

Weaver, E. A.

J. W. Bilbro, H. B. Jeffreys, E. A. Weaver, R. M. Huffaker, G. D. Graig, R. W. George, P. J. Marrero, “Laser Doppler Velocimeter Wake Vortex Tests,” NASA TMX-64988 (1976).

Werner, C.

Werner, Ch.

F. Köpp, H. Herrmann, Ch. Werner, R. L. Schwiesow, F. Bachstein, Erstellung und Erprobung des Laser-Doppler-Anemometers zur Fernmessung des Windes. DFVLR-FB-83-11 (1983) (wiss. Berichtswesen der DFVLR, Postfach 90 60 58, 5000 Köln 90, FRG).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

Yue, G. K.

Appl. Opt. (3)

Bull. Am. Meteorol. Soc. (1)

C. G. Little, “Status of remote sensing of the troposphere,” Bull. Am. Meteorol. Soc. 53, 936 (1972).
[Crossref]

DFVLR-Mitt. 79-04 (1)

D. Lorenz, E. Schmidt, “Methods of Stereoscopic Cloud Analysis from Space,” DFVLR-Mitt. 79-04 (1979) (wiss. Berichtswesen der DFVLR, Postfach 906058, 5000 Köln 90).

Erstellung und Erprobung des Laser-Doppler-Anemometers zur Fernmessung des Windes. DFVLR-FB-83-11 (1)

F. Köpp, H. Herrmann, Ch. Werner, R. L. Schwiesow, F. Bachstein, Erstellung und Erprobung des Laser-Doppler-Anemometers zur Fernmessung des Windes. DFVLR-FB-83-11 (1983) (wiss. Berichtswesen der DFVLR, Postfach 90 60 58, 5000 Köln 90, FRG).

FAA-RD-78-146 (1)

D. C. Burnham, J. N. Hallok, I. H. Tombach, M. R. Brashears, M. R. Barber, “Ground Based Measurements of the Wake Vortex Characteristics of a B 747 Aircraft in Various Configurations,” FAA-RD-78-146 (1978).

NASA TMX-64988 (1)

J. W. Bilbro, H. B. Jeffreys, E. A. Weaver, R. M. Huffaker, G. D. Graig, R. W. George, P. J. Marrero, “Laser Doppler Velocimeter Wake Vortex Tests,” NASA TMX-64988 (1976).

Other (2)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

R. M. Huffaker, T. R. Lawrence, R. S. Keeler, M. J. Post, J. T. Priestley, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part 1,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C.1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the received signal power vs range R for a focused distance of 500 m. Curve 1 is the theoretical curve,4 whereas curve 2 is measured. The other two curves named fog and cloud are hypothetical cases.

Fig. 2
Fig. 2

Measurement of the cloud influence in a wind velocity spectrum (left) and its explanation (right). The velocity spectrum is taken from a VAD scan at the azimuth angle where the largest wind components were measured. The two velocity scales on the right side are valid for the radiosonde (lower scale) and for the line-of-sight component of the VAD scan (VAD velocity = radiosonde velocity × cos49°).

Fig. 3
Fig. 3

Velocity spectra for 50-, 200-, and 350-m altitudes and 2-km (dashed) and 40-km (solid) visibility conditions. The solid curve is multiplied by a factor of 2.5 in the amplitude.

Fig. 4
Fig. 4

Comparison of radiosonde (×) and VAD wind results (○) for a hazy day.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ L = 8 π ( R D ) 2 λ ,
I ( R ) = { R 2 [ 1 + k 2 ( R - 1 - f - 1 ) 2 ] } - 1 ,
I ( R ) = ( f 2 { 1 + [ ( R - f ) / Δ L ] 2 } ) - 1 .

Metrics