Abstract

A technique is described for synthetic generation of rainbow holograms. Minimization of the space–bandwidth product is discussed considering the reconstruction geometry. It is shown how the flexibility of computer-generated holography can be used to make compromises and solve particular problems peculiar to display applications. Artificially introduced change of perspective, distortions in the reconstructed image, and correction of the scale change due to dispersion are discussed.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Benton, “Holographic Displays: 1975–1980,” Opt. Eng. 19, 686 (1980).
  2. S. A. Benton, “Hologram Reconstructions with Extended Incoherent Sources,” J. Opt. Soc. Am. 59, 1545A (1969).
  3. H. Chen, F. T. S. Yu, “One-Step Rainbow Hologram,” Opt. Lett. 2, 85 (1978); E. N. Leith, H. Chen, J. A. Roth, “White Light Hologram Technique,” Appl. Opt. 17, 3187 (1978); H. Podbielska, H. Kasprzak, “Herstellung von pseudo-und orthoskopischen Regenbogenhologrammen in afokalen Zweilinsensystem,” Optik 64, 251 (1983).
    [CrossRef] [PubMed]
  4. D. J. de Bitteto, “Holographic Image Intensification by Superposition of Holograms,” Appl. Opt. 8, 1740 (1969); M. C. King, A. M. Noll, D. H. Berry, “A New Approach to Computer-Generated Holography,” Appl. Opt. 9, 471 (1970).
    [CrossRef] [PubMed]
  5. L. Huff, R. L. Fusek, “Color Holographic Stereograms,” Opt. Eng. 19, 691 (1980).
    [CrossRef]
  6. L. H. Lin, “A Method of Hologram Information Reduction by Spatial Frequency Sampling,” Appl. Opt. 7, 545 (1968).
    [CrossRef] [PubMed]
  7. T. Okoshi, “Three-Dimensional Displays,” Proc. IEEE 68, 548 (1980).
    [CrossRef]
  8. W. J. Dallas, “Computer-Generated Holograms,” in The Computer in Optical Research; Topics in Applied Physics, Vol. 41, B. R. Frieden, Ed. (Springer, New York, 1980), pp. 291–366; W-H. Lee, “Computer-Generated Holograms: Techniques and Applications,” Prog. Opt. 16, 119 (1978).
    [CrossRef]
  9. H. Chen, “Color Blur of the Rainbow Hologram,” Appl. Opt. 17, 3290 (1978); J. C. Wyant, “Image Blur for Rainbow Holograms,” Opt. Lett. 1, 130 (1977).
    [CrossRef] [PubMed]

1980 (3)

L. Huff, R. L. Fusek, “Color Holographic Stereograms,” Opt. Eng. 19, 691 (1980).
[CrossRef]

T. Okoshi, “Three-Dimensional Displays,” Proc. IEEE 68, 548 (1980).
[CrossRef]

S. A. Benton, “Holographic Displays: 1975–1980,” Opt. Eng. 19, 686 (1980).

1978 (2)

1969 (2)

1968 (1)

Benton, S. A.

S. A. Benton, “Holographic Displays: 1975–1980,” Opt. Eng. 19, 686 (1980).

S. A. Benton, “Hologram Reconstructions with Extended Incoherent Sources,” J. Opt. Soc. Am. 59, 1545A (1969).

Chen, H.

Dallas, W. J.

W. J. Dallas, “Computer-Generated Holograms,” in The Computer in Optical Research; Topics in Applied Physics, Vol. 41, B. R. Frieden, Ed. (Springer, New York, 1980), pp. 291–366; W-H. Lee, “Computer-Generated Holograms: Techniques and Applications,” Prog. Opt. 16, 119 (1978).
[CrossRef]

de Bitteto, D. J.

Fusek, R. L.

L. Huff, R. L. Fusek, “Color Holographic Stereograms,” Opt. Eng. 19, 691 (1980).
[CrossRef]

Huff, L.

L. Huff, R. L. Fusek, “Color Holographic Stereograms,” Opt. Eng. 19, 691 (1980).
[CrossRef]

Lin, L. H.

Okoshi, T.

T. Okoshi, “Three-Dimensional Displays,” Proc. IEEE 68, 548 (1980).
[CrossRef]

Yu, F. T. S.

Appl. Opt. (3)

J. Opt. Soc. Am. (1)

S. A. Benton, “Hologram Reconstructions with Extended Incoherent Sources,” J. Opt. Soc. Am. 59, 1545A (1969).

Opt. Eng. (2)

L. Huff, R. L. Fusek, “Color Holographic Stereograms,” Opt. Eng. 19, 691 (1980).
[CrossRef]

S. A. Benton, “Holographic Displays: 1975–1980,” Opt. Eng. 19, 686 (1980).

Opt. Lett. (1)

Proc. IEEE (1)

T. Okoshi, “Three-Dimensional Displays,” Proc. IEEE 68, 548 (1980).
[CrossRef]

Other (1)

W. J. Dallas, “Computer-Generated Holograms,” in The Computer in Optical Research; Topics in Applied Physics, Vol. 41, B. R. Frieden, Ed. (Springer, New York, 1980), pp. 291–366; W-H. Lee, “Computer-Generated Holograms: Techniques and Applications,” Prog. Opt. 16, 119 (1978).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematical optical system to illustrate the principle of one-step rainbow holography.

Fig. 2
Fig. 2

Real (a) and imaginary (b) parts of the 1-D Fourier spectrum used to construct a computer-generated rainbow hologram of the concentric circles and half-circles in Fig. 5.

Fig. 3
Fig. 3

Enlarged portions of the computer-generated rainbow holograms of the concentric circles and the girl in Fig. 5. Three horizontal bands and two adjacent subholograms are shown

Fig. 4
Fig. 4

Illustration of reconstruction geometry.

Fig. 5
Fig. 5

Objects used in the experiments.

Fig. 6
Fig. 6

Optical reconstructions obtained from computer-generated rainbow holograms of the objects in Fig. 5. Various perspective views of the concentric circles and half-circles are indicated by the displacement of the reconstruction relative to the zeroth diffraction order line.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

G ( ν ; y , z ) = - g ( x , y , z ) exp ( - 2 π i ν x ) d x .
G ( ν ; y , z ) = G ( ν ; y , z ) exp [ i ϕ ( ν ; y , z ) ] .
h ( ν ; y , z ) = ½ { 1 + G ( ν ; y , z ) max G ( ν ; y , z ) × cos [ ϕ R ( ν ; z ) + ϕ ( ν ; y , z ) ] } .
H ( ν ; y ) = z o h ( ν ; y , z ) d z .
T ( ν ; y ) = ½ [ 1 + H ( ν ; y ) cos π y μ 0 ] .
β = arcsin μ 0 λ red - arcsin μ 0 λ blue μ 0 ( λ red - λ blue ) = μ 0 Δ λ .
α = arctan ( d h f ) d h f
f min = d h / ( μ 0 Δ λ ) .
R = α μ 0 Δ λ .
γ α = γ β p f min · f min d h = p d h .
ν c = ν o λ red + λ blue - λ λ red ,

Metrics