Abstract

A new type of grazing-incidence spectrometer with a flat focal field is developed, and XUV spectroscopy in the extreme ultraviolet region ranging from 15 to 200 Å is carried out. Soft x-ray line spectra emitted from picosecond laser plasmas of aluminum and iron targets are measured and good resolutions are obtained in the XUV region. The spectral regions of detection are extended to shorter wavelengths (15 Å) using a finer spaced grating. Computational studies on x-ray spectra are also performed taking into account the transient characteristics of picosecond laser-produced plasmas; the importance of the transient treatment is clearly shown. This type of soft x-ray spectrometer should be useful for time-resolved picosecond soft x-ray spectroscopy.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Fonck, A. T. Ramsey, R. V. Yelle, “Multichannel Grazing-Incidence Spectrometer for Plasma Impurity Diagnosis: SPRED,” Appl. Opt. 21, 2115 (1982).
    [CrossRef] [PubMed]
  2. T. Kita, T. Harada, N. Nakano, H. Kuroda, “Mechanically Ruled Aberration-Corrected Concave Gratings for a Flat-Field Grazing-Incidence Spectrograph,” Appl. Opt. 22, 512 (1983).
    [CrossRef] [PubMed]
  3. N. Nakano, H. Kuroda, “X-ray Generation from Laser-Produced Plasmas and Its Atomic-Number Dependence,” Phys. Rev. A 27, 2168 (1983).
    [CrossRef]
  4. N. Nakano, M. Nagase, Y. Tanaka, H. Kuroda, in Laser Interaction and Related Plasma Phenomena, Vol. 6, H. Hora, G. H. Mily, Eds. (Plenum, New York, 1984), p. 14.
  5. T. Harada, T. Kita, “Mechanically Ruled Aberration-Corrected Concave Gratings,” Appl. Opt. 19, 3987 (1980).
    [CrossRef] [PubMed]
  6. D. Colombant, G. F. Tonon, “X-ray Emission in Laser-Produced Plasmas,” J. Appl. Phys. 44, 3524 (1973).
    [CrossRef]
  7. D. Mosher, “Coronal Equilibrium of High-Atomic-Number Plasmas,” Phys. Rev. A 10, 2330 (1974).
    [CrossRef]
  8. L. F. Chase, W. C. Jordan, J. D. Perez, R. R. Johnston, “X-ray Spectrum of a Laser-Produced Iron Plasma,” Phys. Rev. A 13, 1497 (1976).
    [CrossRef]
  9. J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).

1983

1982

1980

1976

L. F. Chase, W. C. Jordan, J. D. Perez, R. R. Johnston, “X-ray Spectrum of a Laser-Produced Iron Plasma,” Phys. Rev. A 13, 1497 (1976).
[CrossRef]

1974

D. Mosher, “Coronal Equilibrium of High-Atomic-Number Plasmas,” Phys. Rev. A 10, 2330 (1974).
[CrossRef]

1973

D. Colombant, G. F. Tonon, “X-ray Emission in Laser-Produced Plasmas,” J. Appl. Phys. 44, 3524 (1973).
[CrossRef]

Chase, L. F.

L. F. Chase, W. C. Jordan, J. D. Perez, R. R. Johnston, “X-ray Spectrum of a Laser-Produced Iron Plasma,” Phys. Rev. A 13, 1497 (1976).
[CrossRef]

Colombant, D.

D. Colombant, G. F. Tonon, “X-ray Emission in Laser-Produced Plasmas,” J. Appl. Phys. 44, 3524 (1973).
[CrossRef]

Fonck, R. J.

Harada, T.

Johnston, R. R.

L. F. Chase, W. C. Jordan, J. D. Perez, R. R. Johnston, “X-ray Spectrum of a Laser-Produced Iron Plasma,” Phys. Rev. A 13, 1497 (1976).
[CrossRef]

Jordan, W. C.

L. F. Chase, W. C. Jordan, J. D. Perez, R. R. Johnston, “X-ray Spectrum of a Laser-Produced Iron Plasma,” Phys. Rev. A 13, 1497 (1976).
[CrossRef]

Kita, T.

Kuroda, H.

T. Kita, T. Harada, N. Nakano, H. Kuroda, “Mechanically Ruled Aberration-Corrected Concave Gratings for a Flat-Field Grazing-Incidence Spectrograph,” Appl. Opt. 22, 512 (1983).
[CrossRef] [PubMed]

N. Nakano, H. Kuroda, “X-ray Generation from Laser-Produced Plasmas and Its Atomic-Number Dependence,” Phys. Rev. A 27, 2168 (1983).
[CrossRef]

N. Nakano, M. Nagase, Y. Tanaka, H. Kuroda, in Laser Interaction and Related Plasma Phenomena, Vol. 6, H. Hora, G. H. Mily, Eds. (Plenum, New York, 1984), p. 14.

Mosher, D.

D. Mosher, “Coronal Equilibrium of High-Atomic-Number Plasmas,” Phys. Rev. A 10, 2330 (1974).
[CrossRef]

Nagase, M.

N. Nakano, M. Nagase, Y. Tanaka, H. Kuroda, in Laser Interaction and Related Plasma Phenomena, Vol. 6, H. Hora, G. H. Mily, Eds. (Plenum, New York, 1984), p. 14.

Nakano, N.

N. Nakano, H. Kuroda, “X-ray Generation from Laser-Produced Plasmas and Its Atomic-Number Dependence,” Phys. Rev. A 27, 2168 (1983).
[CrossRef]

T. Kita, T. Harada, N. Nakano, H. Kuroda, “Mechanically Ruled Aberration-Corrected Concave Gratings for a Flat-Field Grazing-Incidence Spectrograph,” Appl. Opt. 22, 512 (1983).
[CrossRef] [PubMed]

N. Nakano, M. Nagase, Y. Tanaka, H. Kuroda, in Laser Interaction and Related Plasma Phenomena, Vol. 6, H. Hora, G. H. Mily, Eds. (Plenum, New York, 1984), p. 14.

Perez, J. D.

L. F. Chase, W. C. Jordan, J. D. Perez, R. R. Johnston, “X-ray Spectrum of a Laser-Produced Iron Plasma,” Phys. Rev. A 13, 1497 (1976).
[CrossRef]

Ramsey, A. T.

Samson, J. A. R.

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).

Tanaka, Y.

N. Nakano, M. Nagase, Y. Tanaka, H. Kuroda, in Laser Interaction and Related Plasma Phenomena, Vol. 6, H. Hora, G. H. Mily, Eds. (Plenum, New York, 1984), p. 14.

Tonon, G. F.

D. Colombant, G. F. Tonon, “X-ray Emission in Laser-Produced Plasmas,” J. Appl. Phys. 44, 3524 (1973).
[CrossRef]

Yelle, R. V.

Appl. Opt.

J. Appl. Phys.

D. Colombant, G. F. Tonon, “X-ray Emission in Laser-Produced Plasmas,” J. Appl. Phys. 44, 3524 (1973).
[CrossRef]

Phys. Rev. A

D. Mosher, “Coronal Equilibrium of High-Atomic-Number Plasmas,” Phys. Rev. A 10, 2330 (1974).
[CrossRef]

L. F. Chase, W. C. Jordan, J. D. Perez, R. R. Johnston, “X-ray Spectrum of a Laser-Produced Iron Plasma,” Phys. Rev. A 13, 1497 (1976).
[CrossRef]

N. Nakano, H. Kuroda, “X-ray Generation from Laser-Produced Plasmas and Its Atomic-Number Dependence,” Phys. Rev. A 27, 2168 (1983).
[CrossRef]

Other

N. Nakano, M. Nagase, Y. Tanaka, H. Kuroda, in Laser Interaction and Related Plasma Phenomena, Vol. 6, H. Hora, G. H. Mily, Eds. (Plenum, New York, 1984), p. 14.

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic and design specifications of the flat-field spectrometer.

Fig. 2
Fig. 2

Calculated focal curves of the aberration-corrected concave grating using the incidence angle as a parameter. The distance between grating center and entrance slit is 237 mm. (a) For a 1200-grooves/mm grating. (b) For a 2400-grooves/mm grating.

Fig. 3
Fig. 3

Typical soft x-ray line spectra obtained on x-ray films. (a) and (b) show the spectra from laser-produced plasmas by using gratings with 1200 and 2400 grooves/mm, respectively, for an aluminum target and an iron target.

Fig. 4
Fig. 4

Microdensitometer traces of photographic plates. (a) and (b) indicate results for gratings with 1200 and 2400 grooves/mm, respectively.

Fig. 5
Fig. 5

Population densities of iron plasmas as a function of the charged state at different times and also in the steady state; 1: t = 10 psec, 2: t = 20 psec, 3: t = 30 psec, 4: in steady state. (a) Te = 300 eV, (b) Te = 700 eV.

Fig. 6
Fig. 6

First- and second-order x-ray spectra emitted from iron plasmas at different times and in the steady state. Curves 1–4 and 5–8 indicate first- and second-order x-ray spectra, respectively; 1,5: t = 10 psec; 2,6: t = 20 psec; 3,7: t = 30 psec; 4,8: in steady state. (a) Te = 300 eV, (b) Te = 700 eV.

Fig. 7
Fig. 7

X-ray spectra emitted from iron plasmas obtained by summing from first- to fourth-order reflected spectra assuming that higher-order components of x-ray spectra have the same reflectivity; 1: t = 10 psec, 2: t = 20 psec, 3: t = 30 psec, 4: in the steady state. (a) Te = 300 eV, (b) Te = 700 eV.

Fig. 8
Fig. 8

Microdensitometer trace of a photographic plate near 100 Å obtained for aluminum plasmas shown in Fig. 3(b), which indicate a resolution of 0.09 Å and an energy resolution of 9.3 × 10−4.

Fig. 9
Fig. 9

Theoretical resolution evaluated at different wavelengths as a function of distance from the focal curve.

Fig. 10
Fig. 10

Relative x-ray intensity ratio between the results for a 2400-grooves/mm grating and a 1200-grooves/mm grating.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d n j / d t = n e { n j + 1 α j - n j [ S j + α j - 1 ] + n j - 1 S j - 1 } ,             0 j z ,
P f f = 1.5 × 10 - 32 T e 1 / 2 n e j 2 n j , P f b = 1.5 × 10 - 32 T e 1 / 2 n e j 2 n j ( χ j - 1 / T e ) .

Metrics