Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Starling, A. J. Woodall, Physics (Longmans, London, 1961), p. 620.
  2. R. S. Kasana, K.-J. Rosenbruch, “Determination of the Refractive Index of a Lens Using the Murty Shearing Interferometer,” Appl. Opt. 22, 3526 (1983); “Title,” Opt. Commun. 46, 69 (1983).
    [Crossref] [PubMed]
  3. O. Kafri, “Noncoherent Method for Mapping Phase Objects,” Opt. Lett. 5, 555 (1980).
    [Crossref] [PubMed]
  4. Z. Karny, O. Kafri, “Refractive-Index Measurements by Moire Deflectometry,” Appl. Opt. 21, 3326 (1982).
    [Crossref] [PubMed]
  5. O. Kafri, E. Margalit, “Double Exposure Moire Deflectometry for Removing Noise,” Appl. Opt. 20, 2344 (1981).
    [Crossref] [PubMed]
  6. Melles-Griot Optics Guide (B. V., 1975), p. 23.

1983 (1)

1982 (1)

1981 (1)

1980 (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Moire deflectometer assembly for determination of the refractive index of lenses. The 5-mW He–Ne laser beam is expanded by an objective lens O followed by a parabolic mirror M (focal length = 1080 mm) and filtered by a pinhole; P, L, test lens; G, Ronchi rulings with spatial frequency of 6 cycles/mm and a distance of 270 mm.

Fig. 2
Fig. 2

Double-exposure moire deflectogram of a benzene-filled cell with a lens and without it: p′, moire pitch; p″, pitch of the double-exposure fringe.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

1 / f = θ tan α / Δ ,
r 1 - r 2 ( 1 - n i / n ) d ,
1 / f i = ( n - n i ) ( 1 / r 1 - 1 / r 2 ) .
f i f j = n - n j n - n i .
n = n i tan α j - n j tan α i tan α j - tan α i .
α = 2 sin - 1 ( p / 2 p ) .

Metrics