Abstract

Pulsed laser vaporization of small soot particles (<100-nm radius) in a flame is observed with a cw probe laser. Both light scattering and absorption along the pulsed laser beam are measured. Above a threshold of 0.2 J/cm2, both quantities decay exponentially with increased fluence for submicrosecond pulses. These two measurements demonstrate that the number of particles remains constant, but the mean size decreases: that is, small particles vaporize rather than fragment or photophorese. The vaporization process is modeled including transport across the first gas mean free path (Langmuir layer). Numerical integration of the time-dependent conservation equations demonstrates that a simple analytic treatment is adequate. The threshold and fluence dependence are predicted to within experimental uncertainty, assuming soot has the thermal properties of graphite. Laser vaporization of soot has possible application to laser beam profiling, gas velocity measurements, flow visualization, and point measurement of soot absorption.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87 (1979).
    [CrossRef]
  2. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser Saturated Fluorescence Measurements of OH in Sooting, Atmospheric Pressure CH4/O2/N2 Flames,” at Western States Section/Combustion Institute Fall Meeting (1982), paper 82-47.
  3. M. Alden, H. Edner, G. Holmstedt, S. Svanberg, T. Hoegberg, “Single-Pulse Laser-Induced OH Fluorescence in an Atmospheric Flame, Spatially Resolved with a Diode Array Detector,” Appl. Opt. 21, 1236 (1982).
    [CrossRef] [PubMed]
  4. G. Kychakoff, R. D. Howe, R. K. Hanson, J. C. McDaniel, “Quantitative Visualization of Combustion Species in a Plane,” Appl. Opt. 21, 3225 (1982).
    [CrossRef] [PubMed]
  5. A. C. Eckbreth, “Effects of Laser Modulated Particulate Incandescence on Raman Scattering Diagnostics,” J. Appl. Phys. 48, 4473 (1977); A. C. Eckbreth, Prog. Astronaut. Aeronaut. 53, 517 (1977).
    [CrossRef]
  6. M. Pealat, R. Bailly, J.-P. E. Taran, “Real Time Study of Turbulence in Flames by Raman Scattering,” Opt. Commun. 22, 91 (1977).
    [CrossRef]
  7. D. A. Greenhalgh, “RECLAS: Resonant-Enhanced CARS from C2 Produced by Laser Ablation of Soot Particles,” Appl. Opt. 22, 1128 (1983).
    [CrossRef] [PubMed]
  8. C. J. Dasch, “Spatially Resolved Soot Absorption Measurements in Flames Using Laser Vaporization of Particles,” Opt. Lett. 9 (June1984).
    [CrossRef] [PubMed]
  9. C. J. Dasch, “New Soot Diagnostics in Flames Based on Laser Vaporization of Soot,” to be published in Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1984).
  10. D. E. Lencioni, J. E. Lowdin, “Aerosol Clearing with a 10.6 μm Precursor Pulse,” IEEE J. Quantum Electron. QE-10, 236 (1974).
  11. Y. I. Yalamov, V. B. Kutupov, E. R. Shchukin, “Theory of the Photophoretic Motion of the Large-size Volatile Aerosol Particle,” J. Colloid Interface Sci. 57, 564 (1976).
    [CrossRef]
  12. A. D’Allesio, A. Di Lorenzo, A. Borghese, F. Busetta, S. Mati, in Sixteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1977), p. 695.
    [CrossRef]
  13. W. H. Dalzell, A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat-Flux Calculations,” J. Heat Transfer 91, 100 (1969).
    [CrossRef]
  14. S. C. Graham, A. Robinson, “Comparison of Numerical Solutions to the Self-preserving Size Distribution for Aerosol Coagulation in the Free-molecular Regime,” J. Aerosol Sci. 7, 261 (1976).
    [CrossRef]
  15. N. Davidson, Statistical Mechanics (McGraw-Hill, New York, 1962), p. 217.
  16. E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill, New York, 1938), pp. 312–324.
  17. R. W. Powell, in Conference on Industrial Carbon and Graphite (Soc. Chem. Industry, London, 1958), p. 46.
  18. H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic Properties of Carbon up to the Critical Point,” Carbon 11, 555 (1973).
    [CrossRef]
  19. J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).

1984

C. J. Dasch, “Spatially Resolved Soot Absorption Measurements in Flames Using Laser Vaporization of Particles,” Opt. Lett. 9 (June1984).
[CrossRef] [PubMed]

1983

1982

1979

A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87 (1979).
[CrossRef]

1977

A. C. Eckbreth, “Effects of Laser Modulated Particulate Incandescence on Raman Scattering Diagnostics,” J. Appl. Phys. 48, 4473 (1977); A. C. Eckbreth, Prog. Astronaut. Aeronaut. 53, 517 (1977).
[CrossRef]

M. Pealat, R. Bailly, J.-P. E. Taran, “Real Time Study of Turbulence in Flames by Raman Scattering,” Opt. Commun. 22, 91 (1977).
[CrossRef]

1976

Y. I. Yalamov, V. B. Kutupov, E. R. Shchukin, “Theory of the Photophoretic Motion of the Large-size Volatile Aerosol Particle,” J. Colloid Interface Sci. 57, 564 (1976).
[CrossRef]

S. C. Graham, A. Robinson, “Comparison of Numerical Solutions to the Self-preserving Size Distribution for Aerosol Coagulation in the Free-molecular Regime,” J. Aerosol Sci. 7, 261 (1976).
[CrossRef]

1974

D. E. Lencioni, J. E. Lowdin, “Aerosol Clearing with a 10.6 μm Precursor Pulse,” IEEE J. Quantum Electron. QE-10, 236 (1974).

1973

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic Properties of Carbon up to the Critical Point,” Carbon 11, 555 (1973).
[CrossRef]

1969

W. H. Dalzell, A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat-Flux Calculations,” J. Heat Transfer 91, 100 (1969).
[CrossRef]

Alden, M.

Bailly, R.

M. Pealat, R. Bailly, J.-P. E. Taran, “Real Time Study of Turbulence in Flames by Raman Scattering,” Opt. Commun. 22, 91 (1977).
[CrossRef]

Bird, R. B.

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).

Borghese, A.

A. D’Allesio, A. Di Lorenzo, A. Borghese, F. Busetta, S. Mati, in Sixteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1977), p. 695.
[CrossRef]

Busetta, F.

A. D’Allesio, A. Di Lorenzo, A. Borghese, F. Busetta, S. Mati, in Sixteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1977), p. 695.
[CrossRef]

Curtiss, C. F.

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).

D’Allesio, A.

A. D’Allesio, A. Di Lorenzo, A. Borghese, F. Busetta, S. Mati, in Sixteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1977), p. 695.
[CrossRef]

Dalzell, W. H.

W. H. Dalzell, A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat-Flux Calculations,” J. Heat Transfer 91, 100 (1969).
[CrossRef]

Dasch, C. J.

C. J. Dasch, “Spatially Resolved Soot Absorption Measurements in Flames Using Laser Vaporization of Particles,” Opt. Lett. 9 (June1984).
[CrossRef] [PubMed]

C. J. Dasch, “New Soot Diagnostics in Flames Based on Laser Vaporization of Soot,” to be published in Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1984).

Davidson, N.

N. Davidson, Statistical Mechanics (McGraw-Hill, New York, 1962), p. 217.

Di Lorenzo, A.

A. D’Allesio, A. Di Lorenzo, A. Borghese, F. Busetta, S. Mati, in Sixteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1977), p. 695.
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87 (1979).
[CrossRef]

A. C. Eckbreth, “Effects of Laser Modulated Particulate Incandescence on Raman Scattering Diagnostics,” J. Appl. Phys. 48, 4473 (1977); A. C. Eckbreth, Prog. Astronaut. Aeronaut. 53, 517 (1977).
[CrossRef]

Edner, H.

Graham, S. C.

S. C. Graham, A. Robinson, “Comparison of Numerical Solutions to the Self-preserving Size Distribution for Aerosol Coagulation in the Free-molecular Regime,” J. Aerosol Sci. 7, 261 (1976).
[CrossRef]

Greenhalgh, D. A.

Hall, R. J.

A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87 (1979).
[CrossRef]

Hanson, R. K.

Hirschfelder, J. O.

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).

Hoegberg, T.

Holmstedt, G.

Howe, R. D.

Kennard, E. H.

E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill, New York, 1938), pp. 312–324.

Krikorian, O. H.

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic Properties of Carbon up to the Critical Point,” Carbon 11, 555 (1973).
[CrossRef]

Kutupov, V. B.

Y. I. Yalamov, V. B. Kutupov, E. R. Shchukin, “Theory of the Photophoretic Motion of the Large-size Volatile Aerosol Particle,” J. Colloid Interface Sci. 57, 564 (1976).
[CrossRef]

Kychakoff, G.

Laurendeau, N. M.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser Saturated Fluorescence Measurements of OH in Sooting, Atmospheric Pressure CH4/O2/N2 Flames,” at Western States Section/Combustion Institute Fall Meeting (1982), paper 82-47.

Leider, H. R.

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic Properties of Carbon up to the Critical Point,” Carbon 11, 555 (1973).
[CrossRef]

Lencioni, D. E.

D. E. Lencioni, J. E. Lowdin, “Aerosol Clearing with a 10.6 μm Precursor Pulse,” IEEE J. Quantum Electron. QE-10, 236 (1974).

Lowdin, J. E.

D. E. Lencioni, J. E. Lowdin, “Aerosol Clearing with a 10.6 μm Precursor Pulse,” IEEE J. Quantum Electron. QE-10, 236 (1974).

Lucht, R. P.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser Saturated Fluorescence Measurements of OH in Sooting, Atmospheric Pressure CH4/O2/N2 Flames,” at Western States Section/Combustion Institute Fall Meeting (1982), paper 82-47.

Mati, S.

A. D’Allesio, A. Di Lorenzo, A. Borghese, F. Busetta, S. Mati, in Sixteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1977), p. 695.
[CrossRef]

McDaniel, J. C.

Pealat, M.

M. Pealat, R. Bailly, J.-P. E. Taran, “Real Time Study of Turbulence in Flames by Raman Scattering,” Opt. Commun. 22, 91 (1977).
[CrossRef]

Powell, R. W.

R. W. Powell, in Conference on Industrial Carbon and Graphite (Soc. Chem. Industry, London, 1958), p. 46.

Robinson, A.

S. C. Graham, A. Robinson, “Comparison of Numerical Solutions to the Self-preserving Size Distribution for Aerosol Coagulation in the Free-molecular Regime,” J. Aerosol Sci. 7, 261 (1976).
[CrossRef]

Sarofim, A. F.

W. H. Dalzell, A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat-Flux Calculations,” J. Heat Transfer 91, 100 (1969).
[CrossRef]

Shchukin, E. R.

Y. I. Yalamov, V. B. Kutupov, E. R. Shchukin, “Theory of the Photophoretic Motion of the Large-size Volatile Aerosol Particle,” J. Colloid Interface Sci. 57, 564 (1976).
[CrossRef]

Svanberg, S.

Sweeney, D. W.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser Saturated Fluorescence Measurements of OH in Sooting, Atmospheric Pressure CH4/O2/N2 Flames,” at Western States Section/Combustion Institute Fall Meeting (1982), paper 82-47.

Taran, J.-P. E.

M. Pealat, R. Bailly, J.-P. E. Taran, “Real Time Study of Turbulence in Flames by Raman Scattering,” Opt. Commun. 22, 91 (1977).
[CrossRef]

Yalamov, Y. I.

Y. I. Yalamov, V. B. Kutupov, E. R. Shchukin, “Theory of the Photophoretic Motion of the Large-size Volatile Aerosol Particle,” J. Colloid Interface Sci. 57, 564 (1976).
[CrossRef]

Young, D. A.

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic Properties of Carbon up to the Critical Point,” Carbon 11, 555 (1973).
[CrossRef]

Appl. Opt.

Carbon

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic Properties of Carbon up to the Critical Point,” Carbon 11, 555 (1973).
[CrossRef]

Combust. Flame

A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87 (1979).
[CrossRef]

IEEE J. Quantum Electron.

D. E. Lencioni, J. E. Lowdin, “Aerosol Clearing with a 10.6 μm Precursor Pulse,” IEEE J. Quantum Electron. QE-10, 236 (1974).

J. Aerosol Sci.

S. C. Graham, A. Robinson, “Comparison of Numerical Solutions to the Self-preserving Size Distribution for Aerosol Coagulation in the Free-molecular Regime,” J. Aerosol Sci. 7, 261 (1976).
[CrossRef]

J. Appl. Phys.

A. C. Eckbreth, “Effects of Laser Modulated Particulate Incandescence on Raman Scattering Diagnostics,” J. Appl. Phys. 48, 4473 (1977); A. C. Eckbreth, Prog. Astronaut. Aeronaut. 53, 517 (1977).
[CrossRef]

J. Colloid Interface Sci.

Y. I. Yalamov, V. B. Kutupov, E. R. Shchukin, “Theory of the Photophoretic Motion of the Large-size Volatile Aerosol Particle,” J. Colloid Interface Sci. 57, 564 (1976).
[CrossRef]

J. Heat Transfer

W. H. Dalzell, A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat-Flux Calculations,” J. Heat Transfer 91, 100 (1969).
[CrossRef]

Opt. Commun.

M. Pealat, R. Bailly, J.-P. E. Taran, “Real Time Study of Turbulence in Flames by Raman Scattering,” Opt. Commun. 22, 91 (1977).
[CrossRef]

Opt. Lett.

C. J. Dasch, “Spatially Resolved Soot Absorption Measurements in Flames Using Laser Vaporization of Particles,” Opt. Lett. 9 (June1984).
[CrossRef] [PubMed]

Other

C. J. Dasch, “New Soot Diagnostics in Flames Based on Laser Vaporization of Soot,” to be published in Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1984).

A. D’Allesio, A. Di Lorenzo, A. Borghese, F. Busetta, S. Mati, in Sixteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1977), p. 695.
[CrossRef]

N. Davidson, Statistical Mechanics (McGraw-Hill, New York, 1962), p. 217.

E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill, New York, 1938), pp. 312–324.

R. W. Powell, in Conference on Industrial Carbon and Graphite (Soc. Chem. Industry, London, 1958), p. 46.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser Saturated Fluorescence Measurements of OH in Sooting, Atmospheric Pressure CH4/O2/N2 Flames,” at Western States Section/Combustion Institute Fall Meeting (1982), paper 82-47.

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental apparatus. Beams are concentric, and the probe beam is much smaller. Symbols: photodiode, PD; halfwave plate, HWP; photomultiplier, PMT; interference filter with Lorentz scatterer, F; prism polarizer, P; aperture, A.

Fig. 2
Fig. 2

Transient behavior of transmission and light scattering following a laser pulse.

Fig. 3
Fig. 3

Fluence response of light scattering and absorption strengths to a 7-nsec pulsed laser. Results from three runs are shown. Solid lines are a fit [see Eq. (1) and Table I].

Fig. 4
Fig. 4

Relative dimensions of a particle, Langmuir layer, and surrounding gas.

Fig. 5
Fig. 5

Calculated time history of a 10−6 -cm radius particle subjected to a laser intensity of 108 W/cm2 in a 2000 K flame. Detailed calculation, ■; simplified [Eq. (18)], ●.

Fig. 6
Fig. 6

Calculated response of light scattering and absorption strengths to fluence. Given for different values of 〈a0〉/Δt in units of cm/see and for different moments n: monodisperse – · –; n = 3 —; n = 6 - - -.

Tables (2)

Tables Icon

Table I Experimental and Theoretical Vaporization Parameters for 10-nm Radius Particles

Tables Icon

Table II Physical Properties for Carbon

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

D = D 0 exp [ - ( F - F * ) F 0 ] ,             F > F * .
C 1 ρ 1 T 1 / t = γ q - γ q b b - 3 j 1 / a + 3 Δ H 0 ρ 1 a ˙ / μ a .
γ = ( 6 π / λ ) Im [ ( 1 - m 2 ) / ( m 2 + 2 ) ]
q b b = 8 π 5 c ( k T 1 ) 5 / [ 15 ( h c ) 3 ] .
j 1 = ( T 1 - T 2 ) / h ,
h = [ ( 2 - α ) ( 2 π R T 2 ) 1 / 2 ] / [ α P 0 ( C - R / 2 ) ] .
ρ 1 a / t = - P 1 ( μ / 2 π R T 1 ) 1 / 2 ,
P 1 = P ref exp ( - Δ H 0 / R T ) .
( l 3 - a 3 ) C ( ρ 2 T 2 ) / t = 3 ( a 2 j 1 - l 2 j 2 ) ,
( l 3 - a 3 ) ρ 2 / t = 3 ( - a 2 ρ 1 a ˙ - l 2 ρ 2 υ 2 ) .
j 2 = - κ T + υ · ( C ρ 2 T 2 )
T / t = ( C ρ ) - 1 · κ T - υ · T ,
ρ / t = - · ρ υ .
P 0 = ρ R T / μ ,
C 1 ρ 1 T 1 / t = γ q .
( T 1 * - T 0 ) / h = - Δ H 0 ρ 1 a ˙ ( T 1 * ) / μ .
F * = C 1 ρ 1 ( T 1 * - T 0 ) / γ
( 3 Δ H 0 ρ 1 / μ a ) a / t = - γ q .
a * q = 3 ( T 1 * - T 0 ) / h γ .
a - a * = ( a 0 - a * ) exp [ - ( F - F * ) / F 0 ] ,
F 0 = 1.50 J / cm 2 .
F * = - ( T 0 / 16345.0 ) + 0.2040 - 6.250 / T 0 J / cm 2 ,
a * q = - ( T 0 / 5568.0 ) + 0.4316 + 490.5 / T 0 W / cm ,
a / a 0 = exp ( - F / F 0 ) ,
n - 1 ln ( a n / a 0 n )
a / t = - c 1 T 1 - 1 / 2 exp ( - Δ H 0 / R T 1 ) , T 1 / t = c 2 q - c 8 T 1 4 - [ c 3 ( T 1 - T 2 ) / T 2 1 / 2 - c 4 a / t ] / a .
T 2 / t = ( l 3 - a 3 ) - 1 { 3 l 2 c 5 T 2 + a 2 c 6 [ c 3 c 7 ( T 1 - T 2 ) T 1 1 / 2 - 3 a ˙ T 2 ( T 1 - T 2 ) ] } .
T / t = c 5 2 T - v · T .
υ r 2 = { l 2 c 5 T 2 / T 2 + a 2 c 6 [ c 3 c 7 ( T 1 - T 2 ) / 3 T 2 1 / 2 - a ˙ T 1 ] + ( r 2 c 5 2 T / T ) d r } ,
c 1 = P ref ( μ / 2 π R ) 1 / 2 , c 2 = γ / ( C ρ ) 1 , c 3 = 3 P 0 ( C - R / 2 ) / [ ( C ρ ) 1 ( 2 π R ) 1 / 2 ] , c 4 = 3 Δ H 0 / μ C 1 , c 5 = κ / ( C ρ ) 2 , c 6 = R ρ 1 / μ P 0 , c 7 = C 1 / C , c 8 = 8 π 5 γ c ( k T 1 ) 4 / [ 15 C 1 ρ 1 ( h c ) 3 ] .
( C - R / 2 ) P 0 ( T 1 * - T 0 ) / T 0 1 / 2 = Δ H 0 P ref exp ( - Δ H 0 / R T 1 * ) / T 1 * 1 / 2 ,
( T 1 * / T 0 ) 1 / 2 ( T 1 * - T 0 ) = K a exp ( - Δ H 0 / R T 1 * ) .
T 1 * ( new ) = Δ H 0 / R ln { K / [ T 1 * ( old ) / T 0 ] 1 / 2 [ T 1 * ( old ) - T 0 ] } ,

Metrics