Abstract

PLZT thin-film channel waveguides have been successfully formed in ridges by an ion-beam etching process. The electrooptic Kerr coefficients of the waveguides have been newly obtained. We have determined that the electrooptic coefficients R11 and R12 were 0.1–0.2 × 10−16 (m/V)2 and 0.01 × 10−16 (m/V)2, respectively, by Mach-Zehnder interferometric measurement. It was confirmed that PLZT channel waveguides were much more efficient than conventional Ti-diffused LiNbO3 waveguides.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, G. H. Haertling, C. E. Land, “Hot-Pressed (Pb, La) (Br, Ti)O3 Ferroelectric Ceramics for Electrooptic Applications,” J. Am. Ceram. Soc. 54, 1 (1971); C. E. Land, P. D. Thacher, “Ferroelectric Ceramic Electrooptic Materials and Devices,” Proc. IEEE 57, 751 (1969).
    [CrossRef]
  2. W. E. Martin, “A New Waveguide Switch/Modulator for Integrated Optics,” Appl. Phys. Lett. 26, 562 (1975).
    [CrossRef]
  3. See, for example, C. S. Tsai, B. Kim, F. R. El-Akkari, “Optical Channel Waveguide Switch and Coupler Using Total Internal Reflection,” IEEE J. Quantum Electron. QE-14, 513 (1978).
    [CrossRef]
  4. R. L. Holman, P. J. Cressman, “Optical Damage Resistance of Lithium Niobate Waveguides,” Opt. Eng. 21, 1025 (1982).
    [CrossRef]
  5. M. Ishida, H. Matsunami, T. Tanaka, “Preparation and Properties of Ferroelectric PLZT Thin Films by rf Sputtering,” J. Appl. Phys. 48, 951 (1977).
    [CrossRef]
  6. M. Okuyama, T. Usuki, Y. Hamakawa, “Epitaxial Growth of Ferroelectric PLZT Thin Films and Their Optical Properties,” Appl. Phys. 21, 339 (1980).
    [CrossRef]
  7. H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-optic Effects of (Pb, La) (Br, Ti)O3 Thin Films Prepared by rf Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867 (1983).
    [CrossRef]
  8. S. Matsuo, “An Analytical Treatment on the Pattern Formation Process by Sputtering Etching with a Mask,” Jpn. J. Appl. Phys. 15, 1253 (1976).
    [CrossRef]
  9. D. Marcuse, “Mode Conversion Caused by Surface Imperfection of a Dielectric Slab Waveguide,” Bell Syst. Tech. J. 48, 3187 (1969).
  10. P. D. Thacher, “Electro-optic g Coefficient of Pb-Containing Oxygen-Octahedra Ferroelectrics: Ceramics (Pb, Ba) (Zr, Ti)-O3,” J. Appl. Phys. 41, 4791 (1970).
    [CrossRef]

1983

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-optic Effects of (Pb, La) (Br, Ti)O3 Thin Films Prepared by rf Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867 (1983).
[CrossRef]

1982

R. L. Holman, P. J. Cressman, “Optical Damage Resistance of Lithium Niobate Waveguides,” Opt. Eng. 21, 1025 (1982).
[CrossRef]

1980

M. Okuyama, T. Usuki, Y. Hamakawa, “Epitaxial Growth of Ferroelectric PLZT Thin Films and Their Optical Properties,” Appl. Phys. 21, 339 (1980).
[CrossRef]

1978

See, for example, C. S. Tsai, B. Kim, F. R. El-Akkari, “Optical Channel Waveguide Switch and Coupler Using Total Internal Reflection,” IEEE J. Quantum Electron. QE-14, 513 (1978).
[CrossRef]

1977

M. Ishida, H. Matsunami, T. Tanaka, “Preparation and Properties of Ferroelectric PLZT Thin Films by rf Sputtering,” J. Appl. Phys. 48, 951 (1977).
[CrossRef]

1976

S. Matsuo, “An Analytical Treatment on the Pattern Formation Process by Sputtering Etching with a Mask,” Jpn. J. Appl. Phys. 15, 1253 (1976).
[CrossRef]

1975

W. E. Martin, “A New Waveguide Switch/Modulator for Integrated Optics,” Appl. Phys. Lett. 26, 562 (1975).
[CrossRef]

1971

See, for example, G. H. Haertling, C. E. Land, “Hot-Pressed (Pb, La) (Br, Ti)O3 Ferroelectric Ceramics for Electrooptic Applications,” J. Am. Ceram. Soc. 54, 1 (1971); C. E. Land, P. D. Thacher, “Ferroelectric Ceramic Electrooptic Materials and Devices,” Proc. IEEE 57, 751 (1969).
[CrossRef]

1970

P. D. Thacher, “Electro-optic g Coefficient of Pb-Containing Oxygen-Octahedra Ferroelectrics: Ceramics (Pb, Ba) (Zr, Ti)-O3,” J. Appl. Phys. 41, 4791 (1970).
[CrossRef]

1969

D. Marcuse, “Mode Conversion Caused by Surface Imperfection of a Dielectric Slab Waveguide,” Bell Syst. Tech. J. 48, 3187 (1969).

Adachi, H.

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-optic Effects of (Pb, La) (Br, Ti)O3 Thin Films Prepared by rf Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867 (1983).
[CrossRef]

Cressman, P. J.

R. L. Holman, P. J. Cressman, “Optical Damage Resistance of Lithium Niobate Waveguides,” Opt. Eng. 21, 1025 (1982).
[CrossRef]

El-Akkari, F. R.

See, for example, C. S. Tsai, B. Kim, F. R. El-Akkari, “Optical Channel Waveguide Switch and Coupler Using Total Internal Reflection,” IEEE J. Quantum Electron. QE-14, 513 (1978).
[CrossRef]

Haertling, G. H.

See, for example, G. H. Haertling, C. E. Land, “Hot-Pressed (Pb, La) (Br, Ti)O3 Ferroelectric Ceramics for Electrooptic Applications,” J. Am. Ceram. Soc. 54, 1 (1971); C. E. Land, P. D. Thacher, “Ferroelectric Ceramic Electrooptic Materials and Devices,” Proc. IEEE 57, 751 (1969).
[CrossRef]

Hamakawa, Y.

M. Okuyama, T. Usuki, Y. Hamakawa, “Epitaxial Growth of Ferroelectric PLZT Thin Films and Their Optical Properties,” Appl. Phys. 21, 339 (1980).
[CrossRef]

Holman, R. L.

R. L. Holman, P. J. Cressman, “Optical Damage Resistance of Lithium Niobate Waveguides,” Opt. Eng. 21, 1025 (1982).
[CrossRef]

Ishida, M.

M. Ishida, H. Matsunami, T. Tanaka, “Preparation and Properties of Ferroelectric PLZT Thin Films by rf Sputtering,” J. Appl. Phys. 48, 951 (1977).
[CrossRef]

Kawaguchi, T.

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-optic Effects of (Pb, La) (Br, Ti)O3 Thin Films Prepared by rf Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867 (1983).
[CrossRef]

Kim, B.

See, for example, C. S. Tsai, B. Kim, F. R. El-Akkari, “Optical Channel Waveguide Switch and Coupler Using Total Internal Reflection,” IEEE J. Quantum Electron. QE-14, 513 (1978).
[CrossRef]

Land, C. E.

See, for example, G. H. Haertling, C. E. Land, “Hot-Pressed (Pb, La) (Br, Ti)O3 Ferroelectric Ceramics for Electrooptic Applications,” J. Am. Ceram. Soc. 54, 1 (1971); C. E. Land, P. D. Thacher, “Ferroelectric Ceramic Electrooptic Materials and Devices,” Proc. IEEE 57, 751 (1969).
[CrossRef]

Marcuse, D.

D. Marcuse, “Mode Conversion Caused by Surface Imperfection of a Dielectric Slab Waveguide,” Bell Syst. Tech. J. 48, 3187 (1969).

Martin, W. E.

W. E. Martin, “A New Waveguide Switch/Modulator for Integrated Optics,” Appl. Phys. Lett. 26, 562 (1975).
[CrossRef]

Matsunami, H.

M. Ishida, H. Matsunami, T. Tanaka, “Preparation and Properties of Ferroelectric PLZT Thin Films by rf Sputtering,” J. Appl. Phys. 48, 951 (1977).
[CrossRef]

Matsuo, S.

S. Matsuo, “An Analytical Treatment on the Pattern Formation Process by Sputtering Etching with a Mask,” Jpn. J. Appl. Phys. 15, 1253 (1976).
[CrossRef]

Ohji, K.

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-optic Effects of (Pb, La) (Br, Ti)O3 Thin Films Prepared by rf Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867 (1983).
[CrossRef]

Okuyama, M.

M. Okuyama, T. Usuki, Y. Hamakawa, “Epitaxial Growth of Ferroelectric PLZT Thin Films and Their Optical Properties,” Appl. Phys. 21, 339 (1980).
[CrossRef]

Setsune, K.

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-optic Effects of (Pb, La) (Br, Ti)O3 Thin Films Prepared by rf Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867 (1983).
[CrossRef]

Tanaka, T.

M. Ishida, H. Matsunami, T. Tanaka, “Preparation and Properties of Ferroelectric PLZT Thin Films by rf Sputtering,” J. Appl. Phys. 48, 951 (1977).
[CrossRef]

Thacher, P. D.

P. D. Thacher, “Electro-optic g Coefficient of Pb-Containing Oxygen-Octahedra Ferroelectrics: Ceramics (Pb, Ba) (Zr, Ti)-O3,” J. Appl. Phys. 41, 4791 (1970).
[CrossRef]

Tsai, C. S.

See, for example, C. S. Tsai, B. Kim, F. R. El-Akkari, “Optical Channel Waveguide Switch and Coupler Using Total Internal Reflection,” IEEE J. Quantum Electron. QE-14, 513 (1978).
[CrossRef]

Usuki, T.

M. Okuyama, T. Usuki, Y. Hamakawa, “Epitaxial Growth of Ferroelectric PLZT Thin Films and Their Optical Properties,” Appl. Phys. 21, 339 (1980).
[CrossRef]

Wasa, K.

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-optic Effects of (Pb, La) (Br, Ti)O3 Thin Films Prepared by rf Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867 (1983).
[CrossRef]

Appl. Phys.

M. Okuyama, T. Usuki, Y. Hamakawa, “Epitaxial Growth of Ferroelectric PLZT Thin Films and Their Optical Properties,” Appl. Phys. 21, 339 (1980).
[CrossRef]

Appl. Phys. Lett.

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-optic Effects of (Pb, La) (Br, Ti)O3 Thin Films Prepared by rf Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867 (1983).
[CrossRef]

W. E. Martin, “A New Waveguide Switch/Modulator for Integrated Optics,” Appl. Phys. Lett. 26, 562 (1975).
[CrossRef]

Bell Syst. Tech. J.

D. Marcuse, “Mode Conversion Caused by Surface Imperfection of a Dielectric Slab Waveguide,” Bell Syst. Tech. J. 48, 3187 (1969).

IEEE J. Quantum Electron.

See, for example, C. S. Tsai, B. Kim, F. R. El-Akkari, “Optical Channel Waveguide Switch and Coupler Using Total Internal Reflection,” IEEE J. Quantum Electron. QE-14, 513 (1978).
[CrossRef]

J. Am. Ceram. Soc.

See, for example, G. H. Haertling, C. E. Land, “Hot-Pressed (Pb, La) (Br, Ti)O3 Ferroelectric Ceramics for Electrooptic Applications,” J. Am. Ceram. Soc. 54, 1 (1971); C. E. Land, P. D. Thacher, “Ferroelectric Ceramic Electrooptic Materials and Devices,” Proc. IEEE 57, 751 (1969).
[CrossRef]

J. Appl. Phys.

M. Ishida, H. Matsunami, T. Tanaka, “Preparation and Properties of Ferroelectric PLZT Thin Films by rf Sputtering,” J. Appl. Phys. 48, 951 (1977).
[CrossRef]

P. D. Thacher, “Electro-optic g Coefficient of Pb-Containing Oxygen-Octahedra Ferroelectrics: Ceramics (Pb, Ba) (Zr, Ti)-O3,” J. Appl. Phys. 41, 4791 (1970).
[CrossRef]

Jpn. J. Appl. Phys.

S. Matsuo, “An Analytical Treatment on the Pattern Formation Process by Sputtering Etching with a Mask,” Jpn. J. Appl. Phys. 15, 1253 (1976).
[CrossRef]

Opt. Eng.

R. L. Holman, P. J. Cressman, “Optical Damage Resistance of Lithium Niobate Waveguides,” Opt. Eng. 21, 1025 (1982).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cross-sectional view of four kinds of channel waveguide; (a) raised-strip type, (b) ridge type, (c) embedded type, and (d) strip-loaded type; n1,n2,n3,n4 are refractive indices of waveguide, substrate, environment, and loaded strip, respectively.

Fig. 2
Fig. 2

Schematic diagram of an ion-beam etching apparatus with a neutralizer. Ions generated in a discharge chamber are collimated by grids and collide to etch the sample in the target chamber.

Fig. 3
Fig. 3

Line analysis of EPMA of the PLZT channel waveguide. The upper and lower lines show the characteristic x-ray intensity of lead and titanium, respectively.

Fig. 4
Fig. 4

Diagram and SEM image of the ridge-type waveguide.

Fig. 5
Fig. 5

(a) Schematic top view of the Mach-Zehnder interferometer using the PLZT thin-film channel waveguide and (b) cross-sectional view of the PLZT guide.

Fig. 6
Fig. 6

Typical output light intensity as a function of applied dc voltage at 0.633-μm wavelength; (a) the TE0 mode and (b) the TM0 mode.

Fig. 7
Fig. 7

Birefringence shift vs applied electric field obtained by the Mach-Zehnder interferometer for the TE0 mode.

Fig. 8
Fig. 8

Calculated birefringence shift |Δncal| for the (111) plane at 1-kV/mm applied electric field: (a) the linear electrooptic and (b) the quadratic effect; the solid line shows the TE0 mode and the broken line the TM0 mode.

Tables (2)

Tables Icon

Table I Ion-Beam Etching Conditions

Tables Icon

Table II Ratio of Characteristic X-Ray Intensity of Lead to that of Titanium (Ti/Pb) Obtained by Means of EPMA

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( n eff + Δ n ) · l λ - n eff · l λ = 1 2 m ,             ( m = 0 , ± 1 , ± 2 , ) .
Δ n = m λ 2 l ,             ( m = 0 , ± 1 , ± 2 , ) .
[ R 11 R 12 R 12 0 0 0 R 21 R 33 R 13 0 0 R 26 R 21 R 31 R 33 0 0 - R 26 0 0 0 R 44 R 54 0 0 0 0 R 54 R 66 0 0 R 62 - R 62 0 0 R 66 ] .
R 11 R 33 R 44 / 2 R 66 / 2 ,
R 12 R 21 R 13 R 31 ,
Δ n = - ½ n eff 3 R 11 E 2 .
Δ n = - ½ n eff 3 R 12 E 2 .

Metrics