Abstract

This paper is concerned with the application of optics to digital computing. A Hughes liquid crystal light valve is used as an active optical element where a weak light beam can control a strong light beam with either a positive or negative gain characteristic. With this device as the central element we have demonstrated the ability to produce bistable states from which different types of flip-flop can be implemented. In this paper we first present some general comments on digital computing as applied to optics. This is followed by a discussion of optical implementation of various types of flip-flop. These flip-flops are then used in the design of optical equivalents to a few simple sequential circuits such as shift registers and accumulators. As a typical sequential machine, a schematic layout for an optical binary temporal integrator is presented. Finally, a suggested experimental configuration for a optical master—slave flip-flop array is given.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. H. Gerlach, U. K. Sengupta, S. A. Collins, “Single Spatial Light Modulator Bistable Optical Matrix Device Using Optical Feedback,” Opt. Eng. 19, 452 (1980).
    [CrossRef]
  2. U. K. Sengupta, U. H. Gerlach, S. A. Collins, “Bistable Optical Spatial Device Using Direct Optical Feedback,” Opt. Lett. 3, 199 (1978).
    [CrossRef] [PubMed]
  3. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  4. R. A. Athale, S. H. Lee, “Development of an Optical Parallel Logic Device and a Half-Adder Circuit for Digital Optical Processing,” Opt. Eng. 18, 513 (1979).
    [CrossRef]
  5. M. T. Fatehi, K. C. Wasmundt, S. A. Collins, “Optical Logic Gates Using Liquid Crystal Light Valve: Implementation and Application Example,” Appl. Opt. 20, 2250 (1981).
    [CrossRef] [PubMed]
  6. B. H. Soffer, D. Boswell, A. M. Lackner, P. Chavel, A. A. Sawchuk, T. C. Strand, A. R. Tanguay, “Optical Computing with Variable Grating Mode Liquid Crystal Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 128 (1980).
  7. C. Warde, A. M. Weiss, A. D. Fisher, J. I. Thackara, “Optical Information Processing Characteristics of the Microchannel Spatial Light Modulator,” Appl. Opt. 20, 2066 (1981).
    [CrossRef] [PubMed]
  8. R. A. Athale, S. H. Lee, “Bistability and Thresholding by a New Photoconductor-Twisted Nematic Liquid Crystal Device with Optical Feedback,” Appl. Opt. 20, 1424 (1981).
    [CrossRef] [PubMed]
  9. G. Ferrano, G. Hausler, “TV Optical Feedback Systems,” Opt. Eng. 19, 442 (1980).
    [CrossRef]
  10. A. Huang, Y. Tsunoda, J. W. Goodman, S. Ishihara, “Optical Computation Using Residue Arithmetic,” Appl. Opt. 18, 149 (1979).
    [CrossRef] [PubMed]
  11. C. J. Yen, “The Study of Limitations and Application of a Hughes Liquid Crystal Light Valve in the Optical Computing Area,” M.S. Thesis, Ohio State U., Columbus (1980).
  12. C. C. Guest, T. K. Gaylord, “Truth-Table Look-Up Optical Processing Utilizing Binary and Residue Arithmetic,” Appl. Opt. 19, 1201 (1980).
    [CrossRef] [PubMed]
  13. S. F. Habiby, “A Design Study of a Numerical Optical Temporal Integrator Using Residue Arithmetic,” M.S. Thesis, Ohio State U., Columbus (1982).
  14. D. Psaltis, D. Casasent, “Optical Residue Arithmetic: A Correlation Approach,” Appl. Opt. 18, 163 (1979).
    [CrossRef] [PubMed]
  15. A. Tai, I. Cindrich, J. R. Fienup, C. C. Aleksoff, “Optical Residue Arithmetic Computer with Programmable Computation Modules,” Appl. Opt. 18, 2812 (1979).
    [CrossRef] [PubMed]
  16. P. Cheval, R. Forcheimer, B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Architectures for a Sequential Optical Logic Processor,” in Technical Digest, Tenth International Optical Computing Conference (IEEE Computer Society and ICO, New York, 1983), paper 83 CH1880-4.
    [CrossRef]
  17. J. Tanida, Y. Ichioka, “Optical Logic Array Processor,” in Technical Digest, Tenth International Optical Computing Conference (IEEE Computer Society and ICO, New York, 1983), paper 83 CH1880-4.
    [CrossRef]
  18. G. Hausler, “Optical Software Survey,” Opt. Acta 24, 965 (1977).
    [CrossRef]
  19. S. A. Collins, K. C. Wasmundt, “Optical Feedback and Bistability: A Review,” Opt. Eng. 19, 478 (1980).
    [CrossRef]
  20. J. D. Farina, L. M. Narducci, J. M. Yuan, L. A. Lugiato, “Time Evolution of an Optically Bistable System-Local Relaxation and Tunneling,” Opt. Eng. 19, 463 (1980).
    [CrossRef]
  21. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Optical Bistable Devices: The Basic Components of All-Optical Systems,” Opt. Eng. 19, 463 (1980).
    [CrossRef]
  22. P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices Promise Subpicosecond Switching,” IEEE Spectrum 18, 26 (1981).
  23. J. P. Hazan, in Technical Digest, 1978 International Optical Computing Conference, London (IEEE Computer Society, New York, 1978), p. 17, IEEE No. 78CH-103527.
  24. I. N. Kompanets, A. V. Partenov, Yu. M. Popov, “Spatial Modulation of Light in a Photosensitive Structure Composed of a Liquid Crystal and an Insulated Gallium Arsenide Crystal,” Sov. J. Quantum Electron. 9, 1070 (1980).
    [CrossRef]
  25. Z. Kohavi, Switching and Finite Automata Theory (McGraw-Hill, New York, 1970).
  26. M. J. B. Duff, D. M. Watson, “The Cellular Logic Array Image Processor,” Comput. J. 20, 68 (1977).
    [CrossRef]
  27. M. Mano, Computer Logic Design (Prentice-Hall, Englewood Cliffs, N.J., 1972).

1981 (4)

1980 (8)

I. N. Kompanets, A. V. Partenov, Yu. M. Popov, “Spatial Modulation of Light in a Photosensitive Structure Composed of a Liquid Crystal and an Insulated Gallium Arsenide Crystal,” Sov. J. Quantum Electron. 9, 1070 (1980).
[CrossRef]

S. A. Collins, K. C. Wasmundt, “Optical Feedback and Bistability: A Review,” Opt. Eng. 19, 478 (1980).
[CrossRef]

J. D. Farina, L. M. Narducci, J. M. Yuan, L. A. Lugiato, “Time Evolution of an Optically Bistable System-Local Relaxation and Tunneling,” Opt. Eng. 19, 463 (1980).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Optical Bistable Devices: The Basic Components of All-Optical Systems,” Opt. Eng. 19, 463 (1980).
[CrossRef]

C. C. Guest, T. K. Gaylord, “Truth-Table Look-Up Optical Processing Utilizing Binary and Residue Arithmetic,” Appl. Opt. 19, 1201 (1980).
[CrossRef] [PubMed]

G. Ferrano, G. Hausler, “TV Optical Feedback Systems,” Opt. Eng. 19, 442 (1980).
[CrossRef]

B. H. Soffer, D. Boswell, A. M. Lackner, P. Chavel, A. A. Sawchuk, T. C. Strand, A. R. Tanguay, “Optical Computing with Variable Grating Mode Liquid Crystal Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 128 (1980).

U. H. Gerlach, U. K. Sengupta, S. A. Collins, “Single Spatial Light Modulator Bistable Optical Matrix Device Using Optical Feedback,” Opt. Eng. 19, 452 (1980).
[CrossRef]

1979 (4)

1978 (1)

1977 (2)

G. Hausler, “Optical Software Survey,” Opt. Acta 24, 965 (1977).
[CrossRef]

M. J. B. Duff, D. M. Watson, “The Cellular Logic Array Image Processor,” Comput. J. 20, 68 (1977).
[CrossRef]

Aleksoff, C. C.

Athale, R. A.

R. A. Athale, S. H. Lee, “Bistability and Thresholding by a New Photoconductor-Twisted Nematic Liquid Crystal Device with Optical Feedback,” Appl. Opt. 20, 1424 (1981).
[CrossRef] [PubMed]

R. A. Athale, S. H. Lee, “Development of an Optical Parallel Logic Device and a Half-Adder Circuit for Digital Optical Processing,” Opt. Eng. 18, 513 (1979).
[CrossRef]

Boswell, D.

B. H. Soffer, D. Boswell, A. M. Lackner, P. Chavel, A. A. Sawchuk, T. C. Strand, A. R. Tanguay, “Optical Computing with Variable Grating Mode Liquid Crystal Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 128 (1980).

Casasent, D.

Chavel, P.

B. H. Soffer, D. Boswell, A. M. Lackner, P. Chavel, A. A. Sawchuk, T. C. Strand, A. R. Tanguay, “Optical Computing with Variable Grating Mode Liquid Crystal Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 128 (1980).

Cheval, P.

P. Cheval, R. Forcheimer, B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Architectures for a Sequential Optical Logic Processor,” in Technical Digest, Tenth International Optical Computing Conference (IEEE Computer Society and ICO, New York, 1983), paper 83 CH1880-4.
[CrossRef]

Cindrich, I.

Collins, S. A.

M. T. Fatehi, K. C. Wasmundt, S. A. Collins, “Optical Logic Gates Using Liquid Crystal Light Valve: Implementation and Application Example,” Appl. Opt. 20, 2250 (1981).
[CrossRef] [PubMed]

U. H. Gerlach, U. K. Sengupta, S. A. Collins, “Single Spatial Light Modulator Bistable Optical Matrix Device Using Optical Feedback,” Opt. Eng. 19, 452 (1980).
[CrossRef]

S. A. Collins, K. C. Wasmundt, “Optical Feedback and Bistability: A Review,” Opt. Eng. 19, 478 (1980).
[CrossRef]

U. K. Sengupta, U. H. Gerlach, S. A. Collins, “Bistable Optical Spatial Device Using Direct Optical Feedback,” Opt. Lett. 3, 199 (1978).
[CrossRef] [PubMed]

Duff, M. J. B.

M. J. B. Duff, D. M. Watson, “The Cellular Logic Array Image Processor,” Comput. J. 20, 68 (1977).
[CrossRef]

Farina, J. D.

J. D. Farina, L. M. Narducci, J. M. Yuan, L. A. Lugiato, “Time Evolution of an Optically Bistable System-Local Relaxation and Tunneling,” Opt. Eng. 19, 463 (1980).
[CrossRef]

Fatehi, M. T.

Ferrano, G.

G. Ferrano, G. Hausler, “TV Optical Feedback Systems,” Opt. Eng. 19, 442 (1980).
[CrossRef]

Fienup, J. R.

Fisher, A. D.

Forcheimer, R.

P. Cheval, R. Forcheimer, B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Architectures for a Sequential Optical Logic Processor,” in Technical Digest, Tenth International Optical Computing Conference (IEEE Computer Society and ICO, New York, 1983), paper 83 CH1880-4.
[CrossRef]

Gaylord, T. K.

Gerlach, U. H.

U. H. Gerlach, U. K. Sengupta, S. A. Collins, “Single Spatial Light Modulator Bistable Optical Matrix Device Using Optical Feedback,” Opt. Eng. 19, 452 (1980).
[CrossRef]

U. K. Sengupta, U. H. Gerlach, S. A. Collins, “Bistable Optical Spatial Device Using Direct Optical Feedback,” Opt. Lett. 3, 199 (1978).
[CrossRef] [PubMed]

Gibbs, H. M.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Optical Bistable Devices: The Basic Components of All-Optical Systems,” Opt. Eng. 19, 463 (1980).
[CrossRef]

Goodman, J. W.

Guest, C. C.

Habiby, S. F.

S. F. Habiby, “A Design Study of a Numerical Optical Temporal Integrator Using Residue Arithmetic,” M.S. Thesis, Ohio State U., Columbus (1982).

Hausler, G.

G. Ferrano, G. Hausler, “TV Optical Feedback Systems,” Opt. Eng. 19, 442 (1980).
[CrossRef]

G. Hausler, “Optical Software Survey,” Opt. Acta 24, 965 (1977).
[CrossRef]

Hazan, J. P.

J. P. Hazan, in Technical Digest, 1978 International Optical Computing Conference, London (IEEE Computer Society, New York, 1978), p. 17, IEEE No. 78CH-103527.

Huang, A.

Ichioka, Y.

J. Tanida, Y. Ichioka, “Optical Logic Array Processor,” in Technical Digest, Tenth International Optical Computing Conference (IEEE Computer Society and ICO, New York, 1983), paper 83 CH1880-4.
[CrossRef]

Ishihara, S.

Jenkins, B. K.

P. Cheval, R. Forcheimer, B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Architectures for a Sequential Optical Logic Processor,” in Technical Digest, Tenth International Optical Computing Conference (IEEE Computer Society and ICO, New York, 1983), paper 83 CH1880-4.
[CrossRef]

Kohavi, Z.

Z. Kohavi, Switching and Finite Automata Theory (McGraw-Hill, New York, 1970).

Kompanets, I. N.

I. N. Kompanets, A. V. Partenov, Yu. M. Popov, “Spatial Modulation of Light in a Photosensitive Structure Composed of a Liquid Crystal and an Insulated Gallium Arsenide Crystal,” Sov. J. Quantum Electron. 9, 1070 (1980).
[CrossRef]

Lackner, A. M.

B. H. Soffer, D. Boswell, A. M. Lackner, P. Chavel, A. A. Sawchuk, T. C. Strand, A. R. Tanguay, “Optical Computing with Variable Grating Mode Liquid Crystal Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 128 (1980).

Lee, S. H.

R. A. Athale, S. H. Lee, “Bistability and Thresholding by a New Photoconductor-Twisted Nematic Liquid Crystal Device with Optical Feedback,” Appl. Opt. 20, 1424 (1981).
[CrossRef] [PubMed]

R. A. Athale, S. H. Lee, “Development of an Optical Parallel Logic Device and a Half-Adder Circuit for Digital Optical Processing,” Opt. Eng. 18, 513 (1979).
[CrossRef]

Lugiato, L. A.

J. D. Farina, L. M. Narducci, J. M. Yuan, L. A. Lugiato, “Time Evolution of an Optically Bistable System-Local Relaxation and Tunneling,” Opt. Eng. 19, 463 (1980).
[CrossRef]

Mano, M.

M. Mano, Computer Logic Design (Prentice-Hall, Englewood Cliffs, N.J., 1972).

McCall, S. L.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Optical Bistable Devices: The Basic Components of All-Optical Systems,” Opt. Eng. 19, 463 (1980).
[CrossRef]

Narducci, L. M.

J. D. Farina, L. M. Narducci, J. M. Yuan, L. A. Lugiato, “Time Evolution of an Optically Bistable System-Local Relaxation and Tunneling,” Opt. Eng. 19, 463 (1980).
[CrossRef]

Partenov, A. V.

I. N. Kompanets, A. V. Partenov, Yu. M. Popov, “Spatial Modulation of Light in a Photosensitive Structure Composed of a Liquid Crystal and an Insulated Gallium Arsenide Crystal,” Sov. J. Quantum Electron. 9, 1070 (1980).
[CrossRef]

Popov, Yu. M.

I. N. Kompanets, A. V. Partenov, Yu. M. Popov, “Spatial Modulation of Light in a Photosensitive Structure Composed of a Liquid Crystal and an Insulated Gallium Arsenide Crystal,” Sov. J. Quantum Electron. 9, 1070 (1980).
[CrossRef]

Psaltis, D.

Sawchuk, A. A.

B. H. Soffer, D. Boswell, A. M. Lackner, P. Chavel, A. A. Sawchuk, T. C. Strand, A. R. Tanguay, “Optical Computing with Variable Grating Mode Liquid Crystal Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 128 (1980).

P. Cheval, R. Forcheimer, B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Architectures for a Sequential Optical Logic Processor,” in Technical Digest, Tenth International Optical Computing Conference (IEEE Computer Society and ICO, New York, 1983), paper 83 CH1880-4.
[CrossRef]

Sengupta, U. K.

U. H. Gerlach, U. K. Sengupta, S. A. Collins, “Single Spatial Light Modulator Bistable Optical Matrix Device Using Optical Feedback,” Opt. Eng. 19, 452 (1980).
[CrossRef]

U. K. Sengupta, U. H. Gerlach, S. A. Collins, “Bistable Optical Spatial Device Using Direct Optical Feedback,” Opt. Lett. 3, 199 (1978).
[CrossRef] [PubMed]

Smith, P. W.

P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices Promise Subpicosecond Switching,” IEEE Spectrum 18, 26 (1981).

Soffer, B. H.

B. H. Soffer, D. Boswell, A. M. Lackner, P. Chavel, A. A. Sawchuk, T. C. Strand, A. R. Tanguay, “Optical Computing with Variable Grating Mode Liquid Crystal Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 128 (1980).

Strand, T. C.

B. H. Soffer, D. Boswell, A. M. Lackner, P. Chavel, A. A. Sawchuk, T. C. Strand, A. R. Tanguay, “Optical Computing with Variable Grating Mode Liquid Crystal Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 128 (1980).

P. Cheval, R. Forcheimer, B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Architectures for a Sequential Optical Logic Processor,” in Technical Digest, Tenth International Optical Computing Conference (IEEE Computer Society and ICO, New York, 1983), paper 83 CH1880-4.
[CrossRef]

Tai, A.

Tanguay, A. R.

B. H. Soffer, D. Boswell, A. M. Lackner, P. Chavel, A. A. Sawchuk, T. C. Strand, A. R. Tanguay, “Optical Computing with Variable Grating Mode Liquid Crystal Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 128 (1980).

Tanida, J.

J. Tanida, Y. Ichioka, “Optical Logic Array Processor,” in Technical Digest, Tenth International Optical Computing Conference (IEEE Computer Society and ICO, New York, 1983), paper 83 CH1880-4.
[CrossRef]

Thackara, J. I.

Tomlinson, W. J.

P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices Promise Subpicosecond Switching,” IEEE Spectrum 18, 26 (1981).

Tsunoda, Y.

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Optical Bistable Devices: The Basic Components of All-Optical Systems,” Opt. Eng. 19, 463 (1980).
[CrossRef]

Warde, C.

Wasmundt, K. C.

Watson, D. M.

M. J. B. Duff, D. M. Watson, “The Cellular Logic Array Image Processor,” Comput. J. 20, 68 (1977).
[CrossRef]

Weiss, A. M.

Yen, C. J.

C. J. Yen, “The Study of Limitations and Application of a Hughes Liquid Crystal Light Valve in the Optical Computing Area,” M.S. Thesis, Ohio State U., Columbus (1980).

Yuan, J. M.

J. D. Farina, L. M. Narducci, J. M. Yuan, L. A. Lugiato, “Time Evolution of an Optically Bistable System-Local Relaxation and Tunneling,” Opt. Eng. 19, 463 (1980).
[CrossRef]

Appl. Opt. (7)

Comput. J. (1)

M. J. B. Duff, D. M. Watson, “The Cellular Logic Array Image Processor,” Comput. J. 20, 68 (1977).
[CrossRef]

IEEE Spectrum (1)

P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices Promise Subpicosecond Switching,” IEEE Spectrum 18, 26 (1981).

Opt. Acta (1)

G. Hausler, “Optical Software Survey,” Opt. Acta 24, 965 (1977).
[CrossRef]

Opt. Eng. (6)

S. A. Collins, K. C. Wasmundt, “Optical Feedback and Bistability: A Review,” Opt. Eng. 19, 478 (1980).
[CrossRef]

J. D. Farina, L. M. Narducci, J. M. Yuan, L. A. Lugiato, “Time Evolution of an Optically Bistable System-Local Relaxation and Tunneling,” Opt. Eng. 19, 463 (1980).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Optical Bistable Devices: The Basic Components of All-Optical Systems,” Opt. Eng. 19, 463 (1980).
[CrossRef]

G. Ferrano, G. Hausler, “TV Optical Feedback Systems,” Opt. Eng. 19, 442 (1980).
[CrossRef]

U. H. Gerlach, U. K. Sengupta, S. A. Collins, “Single Spatial Light Modulator Bistable Optical Matrix Device Using Optical Feedback,” Opt. Eng. 19, 452 (1980).
[CrossRef]

R. A. Athale, S. H. Lee, “Development of an Optical Parallel Logic Device and a Half-Adder Circuit for Digital Optical Processing,” Opt. Eng. 18, 513 (1979).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

B. H. Soffer, D. Boswell, A. M. Lackner, P. Chavel, A. A. Sawchuk, T. C. Strand, A. R. Tanguay, “Optical Computing with Variable Grating Mode Liquid Crystal Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 128 (1980).

Sov. J. Quantum Electron. (1)

I. N. Kompanets, A. V. Partenov, Yu. M. Popov, “Spatial Modulation of Light in a Photosensitive Structure Composed of a Liquid Crystal and an Insulated Gallium Arsenide Crystal,” Sov. J. Quantum Electron. 9, 1070 (1980).
[CrossRef]

Other (8)

Z. Kohavi, Switching and Finite Automata Theory (McGraw-Hill, New York, 1970).

M. Mano, Computer Logic Design (Prentice-Hall, Englewood Cliffs, N.J., 1972).

J. P. Hazan, in Technical Digest, 1978 International Optical Computing Conference, London (IEEE Computer Society, New York, 1978), p. 17, IEEE No. 78CH-103527.

S. F. Habiby, “A Design Study of a Numerical Optical Temporal Integrator Using Residue Arithmetic,” M.S. Thesis, Ohio State U., Columbus (1982).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

C. J. Yen, “The Study of Limitations and Application of a Hughes Liquid Crystal Light Valve in the Optical Computing Area,” M.S. Thesis, Ohio State U., Columbus (1980).

P. Cheval, R. Forcheimer, B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Architectures for a Sequential Optical Logic Processor,” in Technical Digest, Tenth International Optical Computing Conference (IEEE Computer Society and ICO, New York, 1983), paper 83 CH1880-4.
[CrossRef]

J. Tanida, Y. Ichioka, “Optical Logic Array Processor,” in Technical Digest, Tenth International Optical Computing Conference (IEEE Computer Society and ICO, New York, 1983), paper 83 CH1880-4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic illustration of light valve to be considered.

Fig. 2
Fig. 2

Schematic illustration of general type of optical computer.

Fig. 3
Fig. 3

Example of data subspace with three binary dimensions.

Fig. 4
Fig. 4

Counting sequences in a 3 × 5 state space for (a) weighted sequence and (b) residue sequence.

Fig. 5
Fig. 5

General structure of finite state machines: (a) Mealy machine; (b) Moore machine.

Fig. 6
Fig. 6

Cellular automaton processor.

Fig. 7
Fig. 7

Schematic drawing showing equipment layout for conceptual discussion. The direction of the arrows on polarizer and analyzer represent the transmitted polarization.

Fig. 8
Fig. 8

Schematic representation of an elementary optical feedback system for producing stable states.

Fig. 9
Fig. 9

(a) Schematic drawing showing optical layout for S-R flip-flop; (b) the basic S-R flip-flop: (i) electronic structure; (ii) logic representation.

Fig. 10
Fig. 10

Another possible optical flip-flop scheme. The arrows indicate direction of polarization: ↑ vertical, → horizontal. Glan-Thompson prism GT is arranged so that it transmits horizontal polarization and reflects vertically polarized light. STM is a semi-transparent mirror.

Fig. 11
Fig. 11

Schematic representation of a latch modified from Fig. 9. The bias on the gate LCLVs is such that a dark input (clock = 0) produces 0° rotation of polarization thus allowing the input data to enter LCLV1 and, therefore, load the data. Similarly, when the clock is bright, the input is disconnected, and feedback established thus holding the data. Note: Q ¯ is the output in dark-true-logic (DTL) or the complement of the output in bright-true-logic (BTL).

Fig. 12
Fig. 12

Master—slave flip-flop: input data are sampled when the clock goes high and appear at output path after it goes low.

Fig. 13
Fig. 13

Schematic of an m × n array of K-bit-long serial-in parallel-out shift registers.

Fig. 14
Fig. 14

Flow diagram for binary temporal integrator.

Fig. 15
Fig. 15

Schematic diagram for optical binary temporal integrator.

Fig. 16
Fig. 16

Proposed layout of master—slave accumulator. Also shown are the data organization at significant imaging planes in the optical system.

Metrics