Abstract

A range-resolved DIAL (differential absorption lidar) system with heterodyne detection has been developed. A hybrid TEA CO2 laser was employed as the transmitter oscillator, which emitted single-frequency pulses of 140 mJ. The heterodyne receiver, which had a minimum detectable power of 2 × 10−11 W, could detect the echo signals backscattered from atmospheric aerosols at a 5-km or greater range. The system sensitivity to the target gas, defined as the product of the minimum detectable concentration and the difference in the absorption coefficients, was experimentally found to be 3.7 × 10−4 m−1 for a range resolution of 300 m after averaging over fifty backscattered signals.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474 (1979).
    [CrossRef] [PubMed]
  2. W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proktor, “Calibrated Remote Measurement of NO2 using the Differential-Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
    [CrossRef]
  3. K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
    [CrossRef]
  4. T. Kobayasi, H. Inaba, “Infrared Laser Radar Technique Heterodyne Detection for Range-Resolved Sensing of Air Pollutants,” Opt. Quantum Electron. 7, 319 (1975).
    [CrossRef]
  5. E. Jakeman, C. J. Oliver, E. R. Pike, “Optical Homodyne Detection,” Adv. Phys. 24, 349 (1975).
    [CrossRef]
  6. P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise: Aircraft/Shuttle Measurement of O3, H2O, and NH3 with Pulse Tunable CO2 Lasers,” NASA CP-2138, International Conference on Heterodyne Systems and Technology, Williamsburg, Va. (Mar.1980).
  7. R. M. Hardesty, “A Comparison of Heterodyne and Direct Detection CO2 DIAL Systems for Ground-Based Humidity Profiling,” NOAA Technical Memorandum ERL WPL-64 (1980).
  8. B. J. Rye, “Differential Absorption Lidar System Sensitivity with Heterodyne Reception,” Appl. Opt. 17, 3862 (1978).
    [CrossRef] [PubMed]
  9. J. H. Shapiro, B. A. Capron, R. C. Harney, “Imaging and Target Detection with a Heterodyne-Reception Optical Radar,” Appl. Opt. 20, 3292 (1981).
    [CrossRef] [PubMed]
  10. M. Yoshikawa, T. Fukuda, T. Akamatsu, “Wide Bandwidth HgCdTe Photodiode and Heterodyne Detection,” in Proceedings, First Sensor Symposium, Tsukuba, Japan (June 1981), pp. 235–239.
  11. R. A. McClatchey, A. P. D’Agati, “Atmospheric Transmission of Laser Radiation: Computer Code LASER,” ERP 622, Air Force Geophysics Laboratory (Jan.1978).
  12. M. J. Post, in “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System,” R. M. Huffaker, Ed., NOAA Technical Memorandum ERL WPL-37 (1978).

1981 (1)

1980 (1)

R. M. Hardesty, “A Comparison of Heterodyne and Direct Detection CO2 DIAL Systems for Ground-Based Humidity Profiling,” NOAA Technical Memorandum ERL WPL-64 (1980).

1979 (2)

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474 (1979).
[CrossRef] [PubMed]

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

1978 (1)

1975 (2)

T. Kobayasi, H. Inaba, “Infrared Laser Radar Technique Heterodyne Detection for Range-Resolved Sensing of Air Pollutants,” Opt. Quantum Electron. 7, 319 (1975).
[CrossRef]

E. Jakeman, C. J. Oliver, E. R. Pike, “Optical Homodyne Detection,” Adv. Phys. 24, 349 (1975).
[CrossRef]

1974 (1)

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proktor, “Calibrated Remote Measurement of NO2 using the Differential-Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Akamatsu, T.

M. Yoshikawa, T. Fukuda, T. Akamatsu, “Wide Bandwidth HgCdTe Photodiode and Heterodyne Detection,” in Proceedings, First Sensor Symposium, Tsukuba, Japan (June 1981), pp. 235–239.

Asai, K.

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Bair, C. H.

P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise: Aircraft/Shuttle Measurement of O3, H2O, and NH3 with Pulse Tunable CO2 Lasers,” NASA CP-2138, International Conference on Heterodyne Systems and Technology, Williamsburg, Va. (Mar.1980).

Brockman, P.

P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise: Aircraft/Shuttle Measurement of O3, H2O, and NH3 with Pulse Tunable CO2 Lasers,” NASA CP-2138, International Conference on Heterodyne Systems and Technology, Williamsburg, Va. (Mar.1980).

Browell, E. V.

Capron, B. A.

D’Agati, A. P.

R. A. McClatchey, A. P. D’Agati, “Atmospheric Transmission of Laser Radiation: Computer Code LASER,” ERP 622, Air Force Geophysics Laboratory (Jan.1978).

Fukuda, T.

M. Yoshikawa, T. Fukuda, T. Akamatsu, “Wide Bandwidth HgCdTe Photodiode and Heterodyne Detection,” in Proceedings, First Sensor Symposium, Tsukuba, Japan (June 1981), pp. 235–239.

Grant, W. B.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proktor, “Calibrated Remote Measurement of NO2 using the Differential-Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Hake, R. D.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proktor, “Calibrated Remote Measurement of NO2 using the Differential-Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Hardesty, R. M.

R. M. Hardesty, “A Comparison of Heterodyne and Direct Detection CO2 DIAL Systems for Ground-Based Humidity Profiling,” NOAA Technical Memorandum ERL WPL-64 (1980).

Harney, R. C.

Hess, R. V.

P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise: Aircraft/Shuttle Measurement of O3, H2O, and NH3 with Pulse Tunable CO2 Lasers,” NASA CP-2138, International Conference on Heterodyne Systems and Technology, Williamsburg, Va. (Mar.1980).

Igarashi, T.

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Inaba, H.

T. Kobayasi, H. Inaba, “Infrared Laser Radar Technique Heterodyne Detection for Range-Resolved Sensing of Air Pollutants,” Opt. Quantum Electron. 7, 319 (1975).
[CrossRef]

Itabe, T.

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Jakeman, E.

E. Jakeman, C. J. Oliver, E. R. Pike, “Optical Homodyne Detection,” Adv. Phys. 24, 349 (1975).
[CrossRef]

Kobayasi, T.

T. Kobayasi, H. Inaba, “Infrared Laser Radar Technique Heterodyne Detection for Range-Resolved Sensing of Air Pollutants,” Opt. Quantum Electron. 7, 319 (1975).
[CrossRef]

Liston, E. M.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proktor, “Calibrated Remote Measurement of NO2 using the Differential-Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

McClatchey, R. A.

R. A. McClatchey, A. P. D’Agati, “Atmospheric Transmission of Laser Radiation: Computer Code LASER,” ERP 622, Air Force Geophysics Laboratory (Jan.1978).

McIlrath, T. J.

Oliver, C. J.

E. Jakeman, C. J. Oliver, E. R. Pike, “Optical Homodyne Detection,” Adv. Phys. 24, 349 (1975).
[CrossRef]

Pike, E. R.

E. Jakeman, C. J. Oliver, E. R. Pike, “Optical Homodyne Detection,” Adv. Phys. 24, 349 (1975).
[CrossRef]

Post, M. J.

M. J. Post, in “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System,” R. M. Huffaker, Ed., NOAA Technical Memorandum ERL WPL-37 (1978).

Proktor, E. K.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proktor, “Calibrated Remote Measurement of NO2 using the Differential-Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Robbins, R. C.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proktor, “Calibrated Remote Measurement of NO2 using the Differential-Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Rye, B. J.

Shapiro, J. H.

Staton, L. D.

P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise: Aircraft/Shuttle Measurement of O3, H2O, and NH3 with Pulse Tunable CO2 Lasers,” NASA CP-2138, International Conference on Heterodyne Systems and Technology, Williamsburg, Va. (Mar.1980).

Wilkerson, T. D.

Yoshikawa, M.

M. Yoshikawa, T. Fukuda, T. Akamatsu, “Wide Bandwidth HgCdTe Photodiode and Heterodyne Detection,” in Proceedings, First Sensor Symposium, Tsukuba, Japan (June 1981), pp. 235–239.

Adv. Phys. (1)

E. Jakeman, C. J. Oliver, E. R. Pike, “Optical Homodyne Detection,” Adv. Phys. 24, 349 (1975).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proktor, “Calibrated Remote Measurement of NO2 using the Differential-Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

NOAA Technical Memorandum ERL WPL-64 (1)

R. M. Hardesty, “A Comparison of Heterodyne and Direct Detection CO2 DIAL Systems for Ground-Based Humidity Profiling,” NOAA Technical Memorandum ERL WPL-64 (1980).

Opt. Quantum Electron. (1)

T. Kobayasi, H. Inaba, “Infrared Laser Radar Technique Heterodyne Detection for Range-Resolved Sensing of Air Pollutants,” Opt. Quantum Electron. 7, 319 (1975).
[CrossRef]

Other (4)

P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise: Aircraft/Shuttle Measurement of O3, H2O, and NH3 with Pulse Tunable CO2 Lasers,” NASA CP-2138, International Conference on Heterodyne Systems and Technology, Williamsburg, Va. (Mar.1980).

M. Yoshikawa, T. Fukuda, T. Akamatsu, “Wide Bandwidth HgCdTe Photodiode and Heterodyne Detection,” in Proceedings, First Sensor Symposium, Tsukuba, Japan (June 1981), pp. 235–239.

R. A. McClatchey, A. P. D’Agati, “Atmospheric Transmission of Laser Radiation: Computer Code LASER,” ERP 622, Air Force Geophysics Laboratory (Jan.1978).

M. J. Post, in “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System,” R. M. Huffaker, Ed., NOAA Technical Memorandum ERL WPL-37 (1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

RRDA lidar with heterodyne detection.

Fig. 2
Fig. 2

Pulse shape and frequency characteristics: (a) transmitter output pulse, (b) received pulse at IF amplifier output.

Fig. 3
Fig. 3

Beam power profile of the cw output at the telescope aperture; w0 is 1/e2 power radius.

Fig. 4
Fig. 4

Backscattered signal vs range; N = 50, Bvid = 1.5 MHz, β = 3 × 10−8 m−1 sr−1. The sharp peak is an echo signal from a hillside at ~9 km.

Fig. 5
Fig. 5

Backscattered signal and derived β distribution; N = 30, Bvid = 1.5 MHz.

Fig. 6
Fig. 6

Return signal waveforms; Bvid = 1.5 MHz.

Fig. 7
Fig. 7

Histogram of the normalized received power; for N = 1, IRRV is 1.8. By integrating fifty echoes, IRRV is improved to ~12. Bvid = 1.5 MHz.

Fig. 8
Fig. 8

IRRV improvement by integration; Bvid = 1.5 MHz, PRF = 5 Hz.

Fig. 9
Fig. 9

Noise in a gas concentration profile; N = 50, Bvid = 1.5 MHz, ΔR = 300 nm. The standard deviation of the noise or the sensitivity S is 3.6 × 10−4 m−1. The sharp peaks at 3 km are echoes returned from a roof which was in the field of view when the gas chamber was aimed at.

Fig. 10
Fig. 10

Standard deviation of noise in the measured concentration or the sensitivity S vs the number of pulses integrated N; Bvid = 1.5 MHz, PRF = 5 Hz. Solid lines are S evaluated from IRRV1 using Eq. (6).

Fig. 11
Fig. 11

False alarm caused by the backscatter irregularities; N = 50. The measurement interval was ~2 min.

Fig. 12
Fig. 12

Elimination of the β nonhomogeneity effect; N = 50. Without changing the laser line, 100 pulses were measured successively. The sensitivity S is estimated to be 5.0 × 10−4 m−1.

Fig. 13
Fig. 13

Gas concentration profile. The range to the chamber is ~1100 m. ΔR = 300 m, Bvid = 0.55 MHz, N = 50, Δk = 4.0 × 10−3 ppm−1 m−1.

Tables (1)

Tables Icon

Table I Lidar Parameters

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

C ( R ) = 1 2 Δ k Δ R ln [ P r 1 ( R - Δ R / 2 ) P r 0 ( R + Δ R / 2 ) P r 1 ( R + Δ R / 2 ) P r 0 ( R - Δ R / 2 ) ] ,
σ c 2 = 1 4 ( Δ k ) 2 ( Δ R ) 2 { var [ P r 0 ( R + Δ R / 2 ) ] P r 0 ( R + Δ R / 2 ) 2 + var [ P r 0 ( R - Δ R / 2 ) ] P r 0 ( R - Δ R / 2 ) 2 + var [ P r 1 ( R + Δ R / 2 ) ] P r 1 ( R + Δ R / 2 ) 2 + var [ P r 1 ( R - Δ R / 2 ) ] P r 1 ( R - Δ R / 2 ) 2 } ,
σ c 2 = 1 ( Δ k ) 2 ( Δ R ) 2 [ var ( P r ) P r 2 ] .
IRRV ( P IF ) = [ CNR / 2 1 + CNR / 2 IRRV 0 2 + ( 2 CNR ) - 1 ] 1 / 2 ,
CNR = P r / MDP ,
IRRV 1 = M B I T ,
IRRV ( P r ) = N IRRV 1 = N M B I T .
S Δ k σ c = 1 / ( Δ R M N B I T ) .
MDP = h ν B IF η D η sys ,
P r = P cw ρ A r π R 2 exp ( - 2 α R ) ,
β = MDP · CNR 2 R 2 c E t A r exp ( 2 α R ) ,

Metrics