Abstract

The role of the background irradiance in far-field in-line holography has been systematically studied for improving image-to-background intensity ratio. With given exposure limits, the allowable range for average or background exposure is also discussed for the recordability of high-contrast fringes. A specific example of an Agfa 10E75 plate is considered. Within the allowed background exposure limits, the possibilities are then discussed for optimizing the image-to-background irradiance ratio. Limits caused by the dynamic range of the video system are discussed. Some experimental results are also presented.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, B. J. Thompson, P. Dunn, “Recent Advances in Holography,” Proc. Soc. Photo-Opt. Instrum. Eng. 215, 102 (1980); S. L. Cartwright, P. Dunn, B. J. Thompson, “Particle Sizing Using Far-Field Holography: New Developments,” Opt. Eng. 19, 727 (1980).
    [CrossRef]
  2. J. B. DeVelis, G. B. Parrent, B. J. Thompson, “Image Reconstruction with Fraunhofer Holograms,” J. Opt. Soc. Am. 56, 423 (1966); see also, J. B. DeVelis, G. O. Reynolds, Theory and Applications of Holography (Addison-Wesley, Reading, Mass., 1967).
    [CrossRef]
  3. P. Dunn, J. M. Walls, “Improved Microimages from In-Line Absorption Holograms,” Appl. Opt. 18, 263 (1979).
    [CrossRef] [PubMed]
  4. P. Dunn, J. M. Walls, “Absorption and Phase In-Line Holograms: A Comparison,” Appl. Opt. 18, 2171 (1979).
    [CrossRef] [PubMed]
  5. J. T. Bartlett, R. J. Adams, “Development of a Holographic Technique for Sampling Particles in Moving Aerosols,” Microscope 20, 375 (1972).
  6. J. D. Trolinger, “Particle Field Holography,” Opt. Eng. 14, 383 (1975).
    [CrossRef]
  7. K. Murata, H. Fujiwara, T. Asakura, in Proceedings, Symposium on Engineering Uses of Holography (Strathclyde University, Glasgow, 1970), p. 289.
  8. R. Bexon, M. G. Dalzell, M. C. Stainer, “In-Line Holography and the Assessment of Aerosols,” Opt. Laser Technol. 8, 161 (1976).
    [CrossRef]
  9. G. Haussmann, W. Lauterborn, “Determination of Size and Position of Fast Moving Gas Bubbles in Liquids by Digital 3-D Image Processing of Hologram Reconstructions,” Appl. Opt. 19, 3529 (1980).
    [CrossRef] [PubMed]
  10. See, for example, G. A. Tyler, B. J. Thompson, “Fraunhofer Holography Applied to Particle Size Analysis: A Reassessment,” Opt. Acta 23, 685 (1976).
    [CrossRef]
  11. J. D. Trolinger, R. A. Belz, W. M. Farmer, “Holographic Techniques for the Study of Dynamic Particle Fields,” Appl. Opt. 8, 957 (1969).
    [CrossRef] [PubMed]
  12. Obviously, by particle here we mean particle, bubble, aerosol, etc. depending on the situation.
  13. P. Dunn, B. J. Thompson, “Object Shape, Fringe Visibility, and Resolution in Far-Field Holography,” Opt. Eng. 21, 327 (1982).
    [CrossRef]
  14. Data sheet from Agfa-Gevaert.
  15. S. Johansson, K. Biedermann, “Multiple-Sine-Slit Micro-densitometer and MTF Evaluation for High Resolution Emulsions. 2: MTF Data and Other Recording Parameters of High Resolution Emulsions for Holography,” Appl. Opt. 13, 2288 (1974).
    [CrossRef] [PubMed]
  16. M. J. Landry, G. S. Phipps, “Holographic Characteristics of 10E75 Plates for Single- and Multiple-Exposure Holograms,” Appl. Opt. 1, 2260 (1975).
    [CrossRef]
  17. G. S. Phipps, C. E. Robertson, F. M. Tamashiro, “Reprocessing of Nonoptimally Exposed Holograms,” Appl. Opt. 19, 802 (1980).
    [CrossRef] [PubMed]
  18. See, for example, R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U.P., London, 1983), p. 180.

1982

P. Dunn, B. J. Thompson, “Object Shape, Fringe Visibility, and Resolution in Far-Field Holography,” Opt. Eng. 21, 327 (1982).
[CrossRef]

1980

See, for example, B. J. Thompson, P. Dunn, “Recent Advances in Holography,” Proc. Soc. Photo-Opt. Instrum. Eng. 215, 102 (1980); S. L. Cartwright, P. Dunn, B. J. Thompson, “Particle Sizing Using Far-Field Holography: New Developments,” Opt. Eng. 19, 727 (1980).
[CrossRef]

G. S. Phipps, C. E. Robertson, F. M. Tamashiro, “Reprocessing of Nonoptimally Exposed Holograms,” Appl. Opt. 19, 802 (1980).
[CrossRef] [PubMed]

G. Haussmann, W. Lauterborn, “Determination of Size and Position of Fast Moving Gas Bubbles in Liquids by Digital 3-D Image Processing of Hologram Reconstructions,” Appl. Opt. 19, 3529 (1980).
[CrossRef] [PubMed]

1979

1976

See, for example, G. A. Tyler, B. J. Thompson, “Fraunhofer Holography Applied to Particle Size Analysis: A Reassessment,” Opt. Acta 23, 685 (1976).
[CrossRef]

R. Bexon, M. G. Dalzell, M. C. Stainer, “In-Line Holography and the Assessment of Aerosols,” Opt. Laser Technol. 8, 161 (1976).
[CrossRef]

1975

M. J. Landry, G. S. Phipps, “Holographic Characteristics of 10E75 Plates for Single- and Multiple-Exposure Holograms,” Appl. Opt. 1, 2260 (1975).
[CrossRef]

J. D. Trolinger, “Particle Field Holography,” Opt. Eng. 14, 383 (1975).
[CrossRef]

1974

1972

J. T. Bartlett, R. J. Adams, “Development of a Holographic Technique for Sampling Particles in Moving Aerosols,” Microscope 20, 375 (1972).

1969

1966

Adams, R. J.

J. T. Bartlett, R. J. Adams, “Development of a Holographic Technique for Sampling Particles in Moving Aerosols,” Microscope 20, 375 (1972).

Asakura, T.

K. Murata, H. Fujiwara, T. Asakura, in Proceedings, Symposium on Engineering Uses of Holography (Strathclyde University, Glasgow, 1970), p. 289.

Bartlett, J. T.

J. T. Bartlett, R. J. Adams, “Development of a Holographic Technique for Sampling Particles in Moving Aerosols,” Microscope 20, 375 (1972).

Belz, R. A.

Bexon, R.

R. Bexon, M. G. Dalzell, M. C. Stainer, “In-Line Holography and the Assessment of Aerosols,” Opt. Laser Technol. 8, 161 (1976).
[CrossRef]

Biedermann, K.

Dalzell, M. G.

R. Bexon, M. G. Dalzell, M. C. Stainer, “In-Line Holography and the Assessment of Aerosols,” Opt. Laser Technol. 8, 161 (1976).
[CrossRef]

DeVelis, J. B.

Dunn, P.

P. Dunn, B. J. Thompson, “Object Shape, Fringe Visibility, and Resolution in Far-Field Holography,” Opt. Eng. 21, 327 (1982).
[CrossRef]

See, for example, B. J. Thompson, P. Dunn, “Recent Advances in Holography,” Proc. Soc. Photo-Opt. Instrum. Eng. 215, 102 (1980); S. L. Cartwright, P. Dunn, B. J. Thompson, “Particle Sizing Using Far-Field Holography: New Developments,” Opt. Eng. 19, 727 (1980).
[CrossRef]

P. Dunn, J. M. Walls, “Absorption and Phase In-Line Holograms: A Comparison,” Appl. Opt. 18, 2171 (1979).
[CrossRef] [PubMed]

P. Dunn, J. M. Walls, “Improved Microimages from In-Line Absorption Holograms,” Appl. Opt. 18, 263 (1979).
[CrossRef] [PubMed]

Farmer, W. M.

Fujiwara, H.

K. Murata, H. Fujiwara, T. Asakura, in Proceedings, Symposium on Engineering Uses of Holography (Strathclyde University, Glasgow, 1970), p. 289.

Haussmann, G.

Johansson, S.

Jones, R.

See, for example, R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U.P., London, 1983), p. 180.

Landry, M. J.

M. J. Landry, G. S. Phipps, “Holographic Characteristics of 10E75 Plates for Single- and Multiple-Exposure Holograms,” Appl. Opt. 1, 2260 (1975).
[CrossRef]

Lauterborn, W.

Murata, K.

K. Murata, H. Fujiwara, T. Asakura, in Proceedings, Symposium on Engineering Uses of Holography (Strathclyde University, Glasgow, 1970), p. 289.

Parrent, G. B.

Phipps, G. S.

G. S. Phipps, C. E. Robertson, F. M. Tamashiro, “Reprocessing of Nonoptimally Exposed Holograms,” Appl. Opt. 19, 802 (1980).
[CrossRef] [PubMed]

M. J. Landry, G. S. Phipps, “Holographic Characteristics of 10E75 Plates for Single- and Multiple-Exposure Holograms,” Appl. Opt. 1, 2260 (1975).
[CrossRef]

Robertson, C. E.

Stainer, M. C.

R. Bexon, M. G. Dalzell, M. C. Stainer, “In-Line Holography and the Assessment of Aerosols,” Opt. Laser Technol. 8, 161 (1976).
[CrossRef]

Tamashiro, F. M.

Thompson, B. J.

P. Dunn, B. J. Thompson, “Object Shape, Fringe Visibility, and Resolution in Far-Field Holography,” Opt. Eng. 21, 327 (1982).
[CrossRef]

See, for example, B. J. Thompson, P. Dunn, “Recent Advances in Holography,” Proc. Soc. Photo-Opt. Instrum. Eng. 215, 102 (1980); S. L. Cartwright, P. Dunn, B. J. Thompson, “Particle Sizing Using Far-Field Holography: New Developments,” Opt. Eng. 19, 727 (1980).
[CrossRef]

See, for example, G. A. Tyler, B. J. Thompson, “Fraunhofer Holography Applied to Particle Size Analysis: A Reassessment,” Opt. Acta 23, 685 (1976).
[CrossRef]

J. B. DeVelis, G. B. Parrent, B. J. Thompson, “Image Reconstruction with Fraunhofer Holograms,” J. Opt. Soc. Am. 56, 423 (1966); see also, J. B. DeVelis, G. O. Reynolds, Theory and Applications of Holography (Addison-Wesley, Reading, Mass., 1967).
[CrossRef]

Trolinger, J. D.

Tyler, G. A.

See, for example, G. A. Tyler, B. J. Thompson, “Fraunhofer Holography Applied to Particle Size Analysis: A Reassessment,” Opt. Acta 23, 685 (1976).
[CrossRef]

Walls, J. M.

Wykes, C.

See, for example, R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U.P., London, 1983), p. 180.

Appl. Opt.

J. Opt. Soc. Am.

Microscope

J. T. Bartlett, R. J. Adams, “Development of a Holographic Technique for Sampling Particles in Moving Aerosols,” Microscope 20, 375 (1972).

Opt. Acta

See, for example, G. A. Tyler, B. J. Thompson, “Fraunhofer Holography Applied to Particle Size Analysis: A Reassessment,” Opt. Acta 23, 685 (1976).
[CrossRef]

Opt. Eng.

P. Dunn, B. J. Thompson, “Object Shape, Fringe Visibility, and Resolution in Far-Field Holography,” Opt. Eng. 21, 327 (1982).
[CrossRef]

J. D. Trolinger, “Particle Field Holography,” Opt. Eng. 14, 383 (1975).
[CrossRef]

Opt. Laser Technol.

R. Bexon, M. G. Dalzell, M. C. Stainer, “In-Line Holography and the Assessment of Aerosols,” Opt. Laser Technol. 8, 161 (1976).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

See, for example, B. J. Thompson, P. Dunn, “Recent Advances in Holography,” Proc. Soc. Photo-Opt. Instrum. Eng. 215, 102 (1980); S. L. Cartwright, P. Dunn, B. J. Thompson, “Particle Sizing Using Far-Field Holography: New Developments,” Opt. Eng. 19, 727 (1980).
[CrossRef]

Other

K. Murata, H. Fujiwara, T. Asakura, in Proceedings, Symposium on Engineering Uses of Holography (Strathclyde University, Glasgow, 1970), p. 289.

Data sheet from Agfa-Gevaert.

Obviously, by particle here we mean particle, bubble, aerosol, etc. depending on the situation.

See, for example, R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U.P., London, 1983), p. 180.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Curves showing the limits of average exposure for recordability of maximum contrast vmax of the holographic fringes within emulsion exposure limits 10–50 ergs/cm2 of Agfa 10E75 plates. The shaded area corresponds to the allowed average exposures.

Fig. 2
Fig. 2

Reconstructed images on monitor for different exposure levels. The camera and monitor settings were unchanged, and a variable ratio beam splitter was used at the output of the reconstruction laser so that the background irradiance at the vidicon is the same each time; (a)–(d) correspond to τ0 = 0.1, 0.15, 0.20, and 0.25, respectively.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

τ ( x , y ) = τ b - K I ( x , y ) ,
I ( μ , ν ) = ( τ b - K B 2 ) + K B 2 A * ( μ , ν ) 2 ,
I ( μ , ν ) p + A * ( μ , ν ) 2 ,
p = τ 0 / ( τ b - τ 0 ) ,
I ( μ , ν ) ( p + 1 ) 2 for the object ,
I ( μ , ν ) p 2 for the backround .
σ = ( p + 1 ) 2 / p 2 .
υ max = E max - E min E max + E min = Δ E E av ,
E min E av - Δ E ,
E av E min / ( 1 - υ max ) .
E max E av + Δ E
E av E max / ( 1 + υ max ) .
E min 1 - υ max E av E max 1 + υ max .
σ = ( τ b / τ 0 ) 2 .

Metrics