Abstract

Laser-induced photoluminescence and photoconductivity in rutile crystal are described. Nd:YAG laser photons were employed which have energies of 1.16 eV (1.06 μm). This energy is just slightly more than ⅓ of the TiO2 band gap. Intensities between 105 and 106 W/cm2 were employed. The photoconductivity is shown to be produced by competing single- and two-photon events. The first-order and second-order photoconductivity cross sections are found to be 3.6 × 10−26 cm2 and 1.54 × 10−50 cm4 sec, respectively. A thermoluminescence study revealed traps with thermal ionization energies between 0.4 and 0.9 eV below the conduction band. Traps with photoionization energies ~1 and ~2 eV below the conduction band are believed to be responsible for the observed results and may or may not be due to alumina impurities known to exist in the samples.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Cronemeyer, “Electrical and Optical Properties of Rutile Single Crystals,” Phys. Rev. 87, 876 (1952).
    [CrossRef]
  2. A. K. Ghosh, F. G. Wakim, R. R. Addiss, “Photoelectronic Processes in Rutile,” Phys. Rev. 184, 979 (1969).
    [CrossRef]
  3. D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972), pp. 8–51.
  4. I. M. Catalano, A. Cingolani, A. Minafra, “Multiphoton Transitions in Ionic Crystals,” Phys. Rev. B 5, 1629 (1972).
    [CrossRef]
  5. D. D. Venable, “Multiphoton Excitation in Solids,” Doctoral Dissertation, The American U. (1974).
  6. K. Mizushima, M. Tanaka, A. Asai, S. Iida, J. E. Goodenough, “Impurity Levels of Iron-Group Ions in TiO2 (II),” J. Phys. Chem. Solids 40, 1129 (1979).
    [CrossRef]
  7. D. Curie, Luminescence in Crystals (Wiley, New York, 1963), p. 161.
  8. R. R. Addiss, A. K. Ghosh, F. G. Wakim, “Thermally Stimulated Currents and Luminescence in Rutile (TiO2),” Appl. Phys. Lett. 12, 397 (1968).
    [CrossRef]

1979 (1)

K. Mizushima, M. Tanaka, A. Asai, S. Iida, J. E. Goodenough, “Impurity Levels of Iron-Group Ions in TiO2 (II),” J. Phys. Chem. Solids 40, 1129 (1979).
[CrossRef]

1972 (1)

I. M. Catalano, A. Cingolani, A. Minafra, “Multiphoton Transitions in Ionic Crystals,” Phys. Rev. B 5, 1629 (1972).
[CrossRef]

1969 (1)

A. K. Ghosh, F. G. Wakim, R. R. Addiss, “Photoelectronic Processes in Rutile,” Phys. Rev. 184, 979 (1969).
[CrossRef]

1968 (1)

R. R. Addiss, A. K. Ghosh, F. G. Wakim, “Thermally Stimulated Currents and Luminescence in Rutile (TiO2),” Appl. Phys. Lett. 12, 397 (1968).
[CrossRef]

1952 (1)

D. C. Cronemeyer, “Electrical and Optical Properties of Rutile Single Crystals,” Phys. Rev. 87, 876 (1952).
[CrossRef]

Addiss, R. R.

A. K. Ghosh, F. G. Wakim, R. R. Addiss, “Photoelectronic Processes in Rutile,” Phys. Rev. 184, 979 (1969).
[CrossRef]

R. R. Addiss, A. K. Ghosh, F. G. Wakim, “Thermally Stimulated Currents and Luminescence in Rutile (TiO2),” Appl. Phys. Lett. 12, 397 (1968).
[CrossRef]

Asai, A.

K. Mizushima, M. Tanaka, A. Asai, S. Iida, J. E. Goodenough, “Impurity Levels of Iron-Group Ions in TiO2 (II),” J. Phys. Chem. Solids 40, 1129 (1979).
[CrossRef]

Catalano, I. M.

I. M. Catalano, A. Cingolani, A. Minafra, “Multiphoton Transitions in Ionic Crystals,” Phys. Rev. B 5, 1629 (1972).
[CrossRef]

Cingolani, A.

I. M. Catalano, A. Cingolani, A. Minafra, “Multiphoton Transitions in Ionic Crystals,” Phys. Rev. B 5, 1629 (1972).
[CrossRef]

Cronemeyer, D. C.

D. C. Cronemeyer, “Electrical and Optical Properties of Rutile Single Crystals,” Phys. Rev. 87, 876 (1952).
[CrossRef]

Curie, D.

D. Curie, Luminescence in Crystals (Wiley, New York, 1963), p. 161.

Ghosh, A. K.

A. K. Ghosh, F. G. Wakim, R. R. Addiss, “Photoelectronic Processes in Rutile,” Phys. Rev. 184, 979 (1969).
[CrossRef]

R. R. Addiss, A. K. Ghosh, F. G. Wakim, “Thermally Stimulated Currents and Luminescence in Rutile (TiO2),” Appl. Phys. Lett. 12, 397 (1968).
[CrossRef]

Goodenough, J. E.

K. Mizushima, M. Tanaka, A. Asai, S. Iida, J. E. Goodenough, “Impurity Levels of Iron-Group Ions in TiO2 (II),” J. Phys. Chem. Solids 40, 1129 (1979).
[CrossRef]

Iida, S.

K. Mizushima, M. Tanaka, A. Asai, S. Iida, J. E. Goodenough, “Impurity Levels of Iron-Group Ions in TiO2 (II),” J. Phys. Chem. Solids 40, 1129 (1979).
[CrossRef]

Minafra, A.

I. M. Catalano, A. Cingolani, A. Minafra, “Multiphoton Transitions in Ionic Crystals,” Phys. Rev. B 5, 1629 (1972).
[CrossRef]

Mizushima, K.

K. Mizushima, M. Tanaka, A. Asai, S. Iida, J. E. Goodenough, “Impurity Levels of Iron-Group Ions in TiO2 (II),” J. Phys. Chem. Solids 40, 1129 (1979).
[CrossRef]

Tanaka, M.

K. Mizushima, M. Tanaka, A. Asai, S. Iida, J. E. Goodenough, “Impurity Levels of Iron-Group Ions in TiO2 (II),” J. Phys. Chem. Solids 40, 1129 (1979).
[CrossRef]

Venable, D. D.

D. D. Venable, “Multiphoton Excitation in Solids,” Doctoral Dissertation, The American U. (1974).

Wakim, F. G.

A. K. Ghosh, F. G. Wakim, R. R. Addiss, “Photoelectronic Processes in Rutile,” Phys. Rev. 184, 979 (1969).
[CrossRef]

R. R. Addiss, A. K. Ghosh, F. G. Wakim, “Thermally Stimulated Currents and Luminescence in Rutile (TiO2),” Appl. Phys. Lett. 12, 397 (1968).
[CrossRef]

Appl. Phys. Lett. (1)

R. R. Addiss, A. K. Ghosh, F. G. Wakim, “Thermally Stimulated Currents and Luminescence in Rutile (TiO2),” Appl. Phys. Lett. 12, 397 (1968).
[CrossRef]

J. Phys. Chem. Solids (1)

K. Mizushima, M. Tanaka, A. Asai, S. Iida, J. E. Goodenough, “Impurity Levels of Iron-Group Ions in TiO2 (II),” J. Phys. Chem. Solids 40, 1129 (1979).
[CrossRef]

Phys. Rev. (2)

D. C. Cronemeyer, “Electrical and Optical Properties of Rutile Single Crystals,” Phys. Rev. 87, 876 (1952).
[CrossRef]

A. K. Ghosh, F. G. Wakim, R. R. Addiss, “Photoelectronic Processes in Rutile,” Phys. Rev. 184, 979 (1969).
[CrossRef]

Phys. Rev. B (1)

I. M. Catalano, A. Cingolani, A. Minafra, “Multiphoton Transitions in Ionic Crystals,” Phys. Rev. B 5, 1629 (1972).
[CrossRef]

Other (3)

D. D. Venable, “Multiphoton Excitation in Solids,” Doctoral Dissertation, The American U. (1974).

D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972), pp. 8–51.

D. Curie, Luminescence in Crystals (Wiley, New York, 1963), p. 161.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Transmission of rutile. The transmission of a 5-mm thick crystal is shown. Calculated transmission is higher indicating internal losses.

Fig. 2
Fig. 2

Experimental configuration to measure photoconductivity.

Fig. 3
Fig. 3

Photocurrent as a function of peak laser intensity.

Fig. 4
Fig. 4

Photoluminescence as a function of laser energy.

Fig. 5
Fig. 5

Emissioin from 400 to 980 nm. Laser energy was 0.3 mJ/pulse.

Fig. 6
Fig. 6

Emitted pulse shapes compared with laser pulse. A typical laser pulse shape is shown dashed. The broader emission curves are the pulse shapes when the crystal was pumped with a laser pulse below and above the damage threshold.

Fig. 7
Fig. 7

Thermoluminescence curves for 0.1 K/sec warming rate. Illumination times for curves A, B, C, and 0, 10, and 210 min, respectively.

Fig. 8
Fig. 8

Thermoluminescence curve for 0.44 K/sec warming rate.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Q n = e V 0 V M a - 2 μ τ 2 [ 1 - exp ( - t L / τ ) ] γ n I n ,
Q n σ n t L I n ,
σ n = e a - 2 τ μ V 0 V M γ n .
Q = β Σ n γ n I n ,
β = ea - 2 τ μ V 0 VMt L .
γ 1 = 3.0 × 10 - 26 cm 2 , γ 2 = 1.54 × 10 - 50 cm 4 sec , and γ 3 < 9.6 × 10 - 76 cm 6 sec 2 ,

Metrics