Abstract

An increase in temperature of cascaded image-intensifier tubes increases the photocathode dark emission and decreases the modulation transfer function. The MTF of a cascaded image-intensifier tube has been experimentally measured at different ambient temperatures and the change in the MTF has been correlated with the change in the dark emission.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. O. Towler, “Review of Image Intensification and Conversion,” Adv. Electron. Electron Phys. 52, 143 (1979).
    [CrossRef]
  2. M. Rome, “Photoemissive Cathodes: I. Photoemissive Surfaces in Imaging Devices,” in Photoelectronic Imaging Devices, Vol. 1, L. M. Biberman, S. Nudelman, Eds. (Plenum, New York, 1971), p. 152.
  3. O. P. Nijhawan, P. K. Datta, J. Bhushan, “On the Measurement of MTF using Periodic Patterns of Rectangular and Triangular Waveforms,” Nouv. Rev. Opt. 6, 33 (1975).
    [CrossRef]
  4. W. N. Charman, A. V. Hewitt, “The Influence of Temperature on the Performance of a Cascaded Image Intensifier,” Adv. Electron. Electron Phys. 22A, 101 (1966).
    [CrossRef]
  5. E. A. Richards, “Contrast-enhancement in Imaging Devices by Selection of Input Photosurface Spectral Response,” Adv. Electron. Electron Phys. 28B, 661 (1969).
    [CrossRef]

1979 (1)

G. O. Towler, “Review of Image Intensification and Conversion,” Adv. Electron. Electron Phys. 52, 143 (1979).
[CrossRef]

1975 (1)

O. P. Nijhawan, P. K. Datta, J. Bhushan, “On the Measurement of MTF using Periodic Patterns of Rectangular and Triangular Waveforms,” Nouv. Rev. Opt. 6, 33 (1975).
[CrossRef]

1969 (1)

E. A. Richards, “Contrast-enhancement in Imaging Devices by Selection of Input Photosurface Spectral Response,” Adv. Electron. Electron Phys. 28B, 661 (1969).
[CrossRef]

1966 (1)

W. N. Charman, A. V. Hewitt, “The Influence of Temperature on the Performance of a Cascaded Image Intensifier,” Adv. Electron. Electron Phys. 22A, 101 (1966).
[CrossRef]

Bhushan, J.

O. P. Nijhawan, P. K. Datta, J. Bhushan, “On the Measurement of MTF using Periodic Patterns of Rectangular and Triangular Waveforms,” Nouv. Rev. Opt. 6, 33 (1975).
[CrossRef]

Charman, W. N.

W. N. Charman, A. V. Hewitt, “The Influence of Temperature on the Performance of a Cascaded Image Intensifier,” Adv. Electron. Electron Phys. 22A, 101 (1966).
[CrossRef]

Datta, P. K.

O. P. Nijhawan, P. K. Datta, J. Bhushan, “On the Measurement of MTF using Periodic Patterns of Rectangular and Triangular Waveforms,” Nouv. Rev. Opt. 6, 33 (1975).
[CrossRef]

Hewitt, A. V.

W. N. Charman, A. V. Hewitt, “The Influence of Temperature on the Performance of a Cascaded Image Intensifier,” Adv. Electron. Electron Phys. 22A, 101 (1966).
[CrossRef]

Nijhawan, O. P.

O. P. Nijhawan, P. K. Datta, J. Bhushan, “On the Measurement of MTF using Periodic Patterns of Rectangular and Triangular Waveforms,” Nouv. Rev. Opt. 6, 33 (1975).
[CrossRef]

Richards, E. A.

E. A. Richards, “Contrast-enhancement in Imaging Devices by Selection of Input Photosurface Spectral Response,” Adv. Electron. Electron Phys. 28B, 661 (1969).
[CrossRef]

Rome, M.

M. Rome, “Photoemissive Cathodes: I. Photoemissive Surfaces in Imaging Devices,” in Photoelectronic Imaging Devices, Vol. 1, L. M. Biberman, S. Nudelman, Eds. (Plenum, New York, 1971), p. 152.

Towler, G. O.

G. O. Towler, “Review of Image Intensification and Conversion,” Adv. Electron. Electron Phys. 52, 143 (1979).
[CrossRef]

Adv. Electron. Electron Phys. (3)

G. O. Towler, “Review of Image Intensification and Conversion,” Adv. Electron. Electron Phys. 52, 143 (1979).
[CrossRef]

W. N. Charman, A. V. Hewitt, “The Influence of Temperature on the Performance of a Cascaded Image Intensifier,” Adv. Electron. Electron Phys. 22A, 101 (1966).
[CrossRef]

E. A. Richards, “Contrast-enhancement in Imaging Devices by Selection of Input Photosurface Spectral Response,” Adv. Electron. Electron Phys. 28B, 661 (1969).
[CrossRef]

Nouv. Rev. Opt. (1)

O. P. Nijhawan, P. K. Datta, J. Bhushan, “On the Measurement of MTF using Periodic Patterns of Rectangular and Triangular Waveforms,” Nouv. Rev. Opt. 6, 33 (1975).
[CrossRef]

Other (1)

M. Rome, “Photoemissive Cathodes: I. Photoemissive Surfaces in Imaging Devices,” in Photoelectronic Imaging Devices, Vol. 1, L. M. Biberman, S. Nudelman, Eds. (Plenum, New York, 1971), p. 152.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for measuring the MTF of cascaded image-intensifier tubes at different ambient temperatures.

Fig. 2
Fig. 2

Thermal jacket.

Fig. 3
Fig. 3

Variation of MTF of cascaded II tube with spatial frequency at different ambient temperatures.

Fig. 4
Fig. 4

Variation of MTF of cascaded II tube with ambient temperature at different spatial frequencies.

Fig. 5
Fig. 5

Variation of dark current of cascaded II tube with ambient temperature.

Fig. 6
Fig. 6

Variation of 1 - x 1 - y and T 3 ( f ) T 2 ( f ) T 2 ( f ) - T 1 ( f ) T 3 ( f ) - T 1 ( f ) with ambient temperature zone at different spatial frequencies.

Tables (2)

Tables Icon

Table I Values of (1 − x)/(1 − y) at Different Temperature Zones

Tables Icon

Table II Values of T 3 ( f ) T 2 ( f ) T 2 ( f ) - T 1 ( f ) T 3 ( f ) - T 1 ( f ) at Different Temperature Zones

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

C ( f ) = I max - I min I max + I min .
C ( f ) image = ( I max + d B 1 + d B ) - ( I min + d B 1 + d B ) ( I max + d B 1 + d B ) + ( I min + d B 1 + d B ) = I max - I min I max + I min + 2 ( d B 1 + d B ) .
T ( f ) = I max - I min K [ I max + I min + 2 ( d B 1 + d B ) ]
1 T ( f ) = K [ I max + I min I max - I min + 2 ( d B 1 + d B ) I max - I min ] = K [ 1 T ( f ) + 2 ( d B 1 + d B ) I max - I min ] ,
1 T 1 ( f ) = K [ 1 T ( f ) + 2 ( d B 1 + d B ) I max - I min ] ,
1 T 2 ( f ) = K [ 1 T ( f ) + 2 ( d B 2 + d B ) I max - I min ] ,
1 T 3 ( f ) = K [ 1 T ( f ) + 2 ( d B 3 + d B ) I max - I min ] .
1 T 1 ( f ) - 1 T 2 ( f ) = 2 K I max - I min ( d B 1 - d B 2 ) ,
1 T 1 ( f ) - 1 T 3 ( f ) = 2 K I max - I min ( d B 1 - d B 3 ) .
1 T 1 ( f ) - 1 T 2 ( f ) 1 T 1 ( f ) - 1 T 3 ( f ) = d B 1 - d B 2 d B 1 - d B 3 ,
T 3 ( f ) T 2 ( f ) T 2 ( f ) - T 1 ( f ) T 3 ( f ) - T 1 ( f ) = d B 1 - d B 2 d B 1 - d B 3 .
T 3 ( f ) T 2 ( f ) T 2 ( f ) - T 1 ( f ) T 3 ( f ) - T 1 ( f ) = 1 - x 1 - y .

Metrics