Abstract

The potential of a newly available oxide-n+-p inversion layer silicon photodiode as a radiometric standard is discussed. Data are presented relating the quantum efficiency of these diodes as a function of oxide and reverse bias. The theory of a simple absolute reflectometer/detector device is described and in situ reflectance corrections for one of the diodes are determined to establish its absolute response. Radiant power measured with this diode, at ten wavelengths between 295 and 1014 nm, was then compared with that measured by reference to electrical substitution radiometry.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Geist, W. K. Gladden, E. F. Zalewski, “Physics of Photon-Flux Measurements with Silicon Photodiodes,” J. Opt. Soc. Am. 72, 1068 (1982).
    [CrossRef]
  2. E. F. Zalewski, J. Geist, “Silicon Photodiode Absolute Spectral Response Self-Calibration,” Appl. Opt. 19, 1214 (1980).
    [CrossRef] [PubMed]
  3. J. Geist, E. F. Zalewski, A. R. Schaefer, “Spectral Response Self-Calibration and Interpolation of Silicon Photodiodes,” Appl. Opt. 19, 3795 (1980).
    [CrossRef] [PubMed]
  4. C. G. Hughes, “Silicon Photodiode Absolute Spectral Response Self-Calibration Using a Filtered Tungsten Source,” Appl. Opt. 21, 2129 (1982).
    [CrossRef]
  5. A. R. Schaefer, E. F. Zalewski, J. Geist, “Silicon Detector Nonlinearity and Related Effects,” Appl. Opt. 22, 1232 (1983).
    [CrossRef] [PubMed]
  6. J. Geist, “Silicon Photodiode Front Region Collection Efficiency Models,” J. Appl. Phys. 51, 3993 (1980).
    [CrossRef]
  7. J. C. Geist, A. J. D. Farmer, P. J. Martin, F. J. Wilkinson, S. J. Collocott, “Elimination of Interface Recombination in Oxide Passivated Silicon p+n Photodiodes by Storage of Negative Charge on the Oxide Surface,” Appl. Opt. 21, 1130 (1982).
    [CrossRef] [PubMed]
  8. E. F. Zalewski, in Proceedings, Tenth International Symposium Photo-Detectors (IMEKO, Berlin, Sept.1982).
  9. J. Verdebout, R. L. Booker, “Degradation of Native Oxide Passivated Silicon Photodiodes by Repeated Oxide Bias,” J. Appl. Phys. 55, 406 (1984).
    [CrossRef]
  10. F. J. Wilkinson, A. J. D. Farmer, J. Geist, “The Near Ultraviolet Quantum Yield of Silicon,” J. Appl. Phys. 54, 1172 (1983).
    [CrossRef]
  11. T. Hansen, “Silicon UV-Photodiode Using Natural Inversion Layers,” Phys. Scr. 18, 471 (1978).
    [CrossRef]
  12. J. Geist, E. Liang, A. R. Schaefer, “Complete Collection of Minority Carriers from the Inversion Layer in Induced Junction Diodes,” J. Appl. Phys. 52, 4879 (1981).
    [CrossRef]
  13. UDT-UV100. This reference to a commercial product does not imply endorsement by NBS or that it is necessarily the best available for the particular application.
  14. E. F. Zalewski, C. R. Duda, “Silicon Photodiode Device with 100% External Quantum Efficiency,” Appl. Opt. 22, 2867 (1983).
    [CrossRef] [PubMed]

1984 (1)

J. Verdebout, R. L. Booker, “Degradation of Native Oxide Passivated Silicon Photodiodes by Repeated Oxide Bias,” J. Appl. Phys. 55, 406 (1984).
[CrossRef]

1983 (3)

1982 (3)

1981 (1)

J. Geist, E. Liang, A. R. Schaefer, “Complete Collection of Minority Carriers from the Inversion Layer in Induced Junction Diodes,” J. Appl. Phys. 52, 4879 (1981).
[CrossRef]

1980 (3)

1978 (1)

T. Hansen, “Silicon UV-Photodiode Using Natural Inversion Layers,” Phys. Scr. 18, 471 (1978).
[CrossRef]

Booker, R. L.

J. Verdebout, R. L. Booker, “Degradation of Native Oxide Passivated Silicon Photodiodes by Repeated Oxide Bias,” J. Appl. Phys. 55, 406 (1984).
[CrossRef]

Collocott, S. J.

Duda, C. R.

Farmer, A. J. D.

Geist, J.

A. R. Schaefer, E. F. Zalewski, J. Geist, “Silicon Detector Nonlinearity and Related Effects,” Appl. Opt. 22, 1232 (1983).
[CrossRef] [PubMed]

F. J. Wilkinson, A. J. D. Farmer, J. Geist, “The Near Ultraviolet Quantum Yield of Silicon,” J. Appl. Phys. 54, 1172 (1983).
[CrossRef]

J. Geist, E. Liang, A. R. Schaefer, “Complete Collection of Minority Carriers from the Inversion Layer in Induced Junction Diodes,” J. Appl. Phys. 52, 4879 (1981).
[CrossRef]

J. Geist, “Silicon Photodiode Front Region Collection Efficiency Models,” J. Appl. Phys. 51, 3993 (1980).
[CrossRef]

E. F. Zalewski, J. Geist, “Silicon Photodiode Absolute Spectral Response Self-Calibration,” Appl. Opt. 19, 1214 (1980).
[CrossRef] [PubMed]

J. Geist, E. F. Zalewski, A. R. Schaefer, “Spectral Response Self-Calibration and Interpolation of Silicon Photodiodes,” Appl. Opt. 19, 3795 (1980).
[CrossRef] [PubMed]

Geist, J. C.

Gladden, W. K.

Hansen, T.

T. Hansen, “Silicon UV-Photodiode Using Natural Inversion Layers,” Phys. Scr. 18, 471 (1978).
[CrossRef]

Hughes, C. G.

Liang, E.

J. Geist, E. Liang, A. R. Schaefer, “Complete Collection of Minority Carriers from the Inversion Layer in Induced Junction Diodes,” J. Appl. Phys. 52, 4879 (1981).
[CrossRef]

Martin, P. J.

Schaefer, A. R.

Verdebout, J.

J. Verdebout, R. L. Booker, “Degradation of Native Oxide Passivated Silicon Photodiodes by Repeated Oxide Bias,” J. Appl. Phys. 55, 406 (1984).
[CrossRef]

Wilkinson, F. J.

Zalewski, E. F.

Appl. Opt. (6)

J. Appl. Phys. (4)

J. Geist, E. Liang, A. R. Schaefer, “Complete Collection of Minority Carriers from the Inversion Layer in Induced Junction Diodes,” J. Appl. Phys. 52, 4879 (1981).
[CrossRef]

J. Verdebout, R. L. Booker, “Degradation of Native Oxide Passivated Silicon Photodiodes by Repeated Oxide Bias,” J. Appl. Phys. 55, 406 (1984).
[CrossRef]

F. J. Wilkinson, A. J. D. Farmer, J. Geist, “The Near Ultraviolet Quantum Yield of Silicon,” J. Appl. Phys. 54, 1172 (1983).
[CrossRef]

J. Geist, “Silicon Photodiode Front Region Collection Efficiency Models,” J. Appl. Phys. 51, 3993 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

Phys. Scr. (1)

T. Hansen, “Silicon UV-Photodiode Using Natural Inversion Layers,” Phys. Scr. 18, 471 (1978).
[CrossRef]

Other (2)

E. F. Zalewski, in Proceedings, Tenth International Symposium Photo-Detectors (IMEKO, Berlin, Sept.1982).

UDT-UV100. This reference to a commercial product does not imply endorsement by NBS or that it is necessarily the best available for the particular application.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Detector response as a function of reverse bias at wavelengths in the near UV, visible, and near IR. Response saturation is dependent on photon flux level but not wavelength.

Fig. 2
Fig. 2

Negative oxide bias curves obtained using Hg–Xe white light.

Fig. 3
Fig. 3

Separate oxide bias and reverse bias response curves. At these photocurrent levels either method will saturate the diode. λ = 365 nm. Logarithmic voltage scale.

Fig. 4
Fig. 4

Oxide and reverse bias response curves obtained using 405-nm radiation.

Fig. 5
Fig. 5

Oxide and reverse bias response curves using 365- and 820-nm radiation. Incident flux was adjusted so that the zero bias photocurrents were equal at both wavelengths.

Fig. 6
Fig. 6

Three configurations of concave reflector (R) and windowless diode (D) for producing signals S1, S2, and S3 used to determine spectral reflectance ρ(λ) of the diode.

Fig. 7
Fig. 7

Spectral reflectance of a windowless inversion layer photodiode determined in situ. Reflectance values are plotted for ten wavelengths from 295 to 1014 nm.

Fig. 8
Fig. 8

Change in diode response as a function of reverse bias at 820 am for power levels of 184 and 323 μW.

Fig. 9
Fig. 9

Difference between in situ inversion layer diode measurements and reference instrument measurements of optical power: □, DRIP below 300 μW and ○, ECPR above 300 μW.

Tables (2)

Tables Icon

Table I Spectral Reflectance of a Windowless Inversion Layer Photodiode

Tables Icon

Table II Ratio of Power in Beam Measured with UV 100 Inversion Layer Photodiode to Power Measured with a Reference Instrument

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E ex = E in ( 1 - ρ ) ,
R ( λ ) = E ex λ K ,
R ( λ ) = ( 1 - ρ ) λ K .
S 1 = k ϕ ( 1 - ρ ) ,
S 2 = k ϕ [ ( 1 - ρ ) + ρ ρ m ( 1 - ρ ) ] = k ϕ ( 1 - ρ ) ( 1 + ρ ρ m ) ,
S 3 = k ϕ ρ m ( 1 - ρ ) .
ρ = S 2 - S 1 S 3 .
S 0 S 1 = ( 1 - ρ 0 ) ( 1 - ρ 19 ) , ρ 0 = 1 - S 0 S 1 ( 1 - ρ 19 ) ,

Metrics