Abstract

The apodization technique has been applied to refracting telescopes but rarely to reflecting telescopes. This paper reports results obtained using a 16-sec of arc f/11 Cassegrain telescope. Aperture shapes were determined by imposing the condition that the diffraction pattern along one direction in the image plane be defined by a Sonine diffraction pattern. Polaris (α-UMin) and its companion were used as the test system.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. van Albada, Contrib. Bosscha Observatory No. 6 (1958a).
  2. I. W. Lindenblad, Astron. J. 75, 841 (1970).
    [CrossRef]
  3. L. M. Tuvikene, “On Apodizating Diaphragms and Diaphragms Increasing Resolving Power,” Opt. Spectroscopy 10, 144 (1961).
  4. D. C. Black, Ed., Project Orion, NASA Spec. Publ. (1980), pp. 53–61.
  5. H. Osterberg, J. E. Wilkins, J. Opt. Soc. Am. 39, 553 (1949).
    [CrossRef]
  6. A. B. Schultz, “Studies of the Resolving Power of UNR’s 16″ Reflecting Telescope,” Ph.D. Dissertation (1982), unpublished.
  7. A. B. Schultz, T. V. Frazier, “A Systematic Review of Aperture Shapes,” in Publ. Lowell Obs.: Proc. IAU Colloquium No. 62 (1981).
  8. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge U. P., 1966).

1981 (1)

A. B. Schultz, T. V. Frazier, “A Systematic Review of Aperture Shapes,” in Publ. Lowell Obs.: Proc. IAU Colloquium No. 62 (1981).

1970 (1)

I. W. Lindenblad, Astron. J. 75, 841 (1970).
[CrossRef]

1961 (1)

L. M. Tuvikene, “On Apodizating Diaphragms and Diaphragms Increasing Resolving Power,” Opt. Spectroscopy 10, 144 (1961).

1958 (1)

G. B. van Albada, Contrib. Bosscha Observatory No. 6 (1958a).

1949 (1)

Frazier, T. V.

A. B. Schultz, T. V. Frazier, “A Systematic Review of Aperture Shapes,” in Publ. Lowell Obs.: Proc. IAU Colloquium No. 62 (1981).

Lindenblad, I. W.

I. W. Lindenblad, Astron. J. 75, 841 (1970).
[CrossRef]

Osterberg, H.

Schultz, A. B.

A. B. Schultz, T. V. Frazier, “A Systematic Review of Aperture Shapes,” in Publ. Lowell Obs.: Proc. IAU Colloquium No. 62 (1981).

A. B. Schultz, “Studies of the Resolving Power of UNR’s 16″ Reflecting Telescope,” Ph.D. Dissertation (1982), unpublished.

Tuvikene, L. M.

L. M. Tuvikene, “On Apodizating Diaphragms and Diaphragms Increasing Resolving Power,” Opt. Spectroscopy 10, 144 (1961).

van Albada, G. B.

G. B. van Albada, Contrib. Bosscha Observatory No. 6 (1958a).

Watson, G. N.

G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge U. P., 1966).

Wilkins, J. E.

Astron. J. (1)

I. W. Lindenblad, Astron. J. 75, 841 (1970).
[CrossRef]

Contrib. Bosscha Observatory No. (1)

G. B. van Albada, Contrib. Bosscha Observatory No. 6 (1958a).

J. Opt. Soc. Am. (1)

Opt. Spectroscopy (1)

L. M. Tuvikene, “On Apodizating Diaphragms and Diaphragms Increasing Resolving Power,” Opt. Spectroscopy 10, 144 (1961).

Proc. IAU Colloquium No. 62 (1)

A. B. Schultz, T. V. Frazier, “A Systematic Review of Aperture Shapes,” in Publ. Lowell Obs.: Proc. IAU Colloquium No. 62 (1981).

Other (3)

G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge U. P., 1966).

D. C. Black, Ed., Project Orion, NASA Spec. Publ. (1980), pp. 53–61.

A. B. Schultz, “Studies of the Resolving Power of UNR’s 16″ Reflecting Telescope,” Ph.D. Dissertation (1982), unpublished.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Plate photographs of Polaris: (a) shadow of unapodized aperture and corresponding image of Polaris and companion; (b), (c), (d) shadow of circular aperture (15-sec of arc diam) with Sonine masks u = 1, 5, 7, and corresponding images of Polaris and companion, respectively.

Fig. 2
Fig. 2

Plate photographs of Polaris: (a) shadow of Sonine aperture stop (u = 1) and corresponding image of Polaris and companion; (b) and (c) shadow of Sonine aperture stop (u = 1) with Sonine mask (u = 7) and corresponding images of Polaris and companion, respectively. The aperture stop has been rotated 90° in (d) with respect to the orientation of the mask in (c).

Fig. 3
Fig. 3

Joyce-Loeble microdensitometer traces through the images of Polaris A and B formed by (a) and (b) circular aperture with Sonine masks u = 5 and 7, respectively; (c) and (d) Sonine aperture stop (u = 1) with Sonine mask (u = 7). The aperture stop has been rotated 90° in (d) with respect to the orientation of the mask in (c). Slit width, height, recording speed, etc. were the same for all traces. Scan right to left.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P ( ρ ) = [ 1 - ( ρ ρ m ) 2 ] ν ,
Y = ± ½ ( 1 - 4 x 2 ) u + 1 2 ,

Metrics