Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Abelès, “La dètermination de l’indice et de l’epaineur des couches minces transparentes,” J. Phys. Radium 11, 310 (1950).
    [CrossRef]
  2. M. Hacskaylo, “Determination of the Refractive Index of Thin Dielectric Films,” J. Opt. Soc. Am. 54, 198 (1964).
    [CrossRef]
  3. W. K. Burns, A. B. Lee, “Effect of Thin-Film Thickness on Abelès-Type Index Measurements,” J. Opt. Soc. Am. 64, 108 (1974).
    [CrossRef]
  4. A. C. Traub, H. Osterberg, “Brewster Angle Apparatus for Thin Film Index Measurements,” J. Opt. Soc. Am. 47, 62 (1957).
    [CrossRef]
  5. A. R. Reisinger, H. B. Morris, K. L. Lawley, “Alternative to Ellipsometry for Characterizing Transparent Planar Thin Films,” Opt. Eng. 20, 111 (1981).
    [CrossRef]
  6. Kodak Micro Resist 747, Publication No. P-306 (1975).
  7. L. I. Maissel, R. Glang, Eds., Handbook of Thin Film Technology (McGraw-Hill, New York, 1970), p. 7–26.
  8. For electron beam deposition of amorphous SiO2 at λ = 5500 Å as reported by G. Hass, M. H. Francombe, R. W. Hoffman, Eds., Physics of Thin Films (Academic, New York, 1975), Vol. 8, p. 29.
  9. M. Françon, Progress in Microscopy (Row, Paterson, & Elmsford, New York, 1961), Chap. 6.

1981 (1)

A. R. Reisinger, H. B. Morris, K. L. Lawley, “Alternative to Ellipsometry for Characterizing Transparent Planar Thin Films,” Opt. Eng. 20, 111 (1981).
[CrossRef]

1974 (1)

1964 (1)

1957 (1)

1950 (1)

F. Abelès, “La dètermination de l’indice et de l’epaineur des couches minces transparentes,” J. Phys. Radium 11, 310 (1950).
[CrossRef]

Abelès, F.

F. Abelès, “La dètermination de l’indice et de l’epaineur des couches minces transparentes,” J. Phys. Radium 11, 310 (1950).
[CrossRef]

Burns, W. K.

Françon, M.

M. Françon, Progress in Microscopy (Row, Paterson, & Elmsford, New York, 1961), Chap. 6.

Hacskaylo, M.

Lawley, K. L.

A. R. Reisinger, H. B. Morris, K. L. Lawley, “Alternative to Ellipsometry for Characterizing Transparent Planar Thin Films,” Opt. Eng. 20, 111 (1981).
[CrossRef]

Lee, A. B.

Morris, H. B.

A. R. Reisinger, H. B. Morris, K. L. Lawley, “Alternative to Ellipsometry for Characterizing Transparent Planar Thin Films,” Opt. Eng. 20, 111 (1981).
[CrossRef]

Osterberg, H.

Reisinger, A. R.

A. R. Reisinger, H. B. Morris, K. L. Lawley, “Alternative to Ellipsometry for Characterizing Transparent Planar Thin Films,” Opt. Eng. 20, 111 (1981).
[CrossRef]

Traub, A. C.

J. Opt. Soc. Am. (3)

J. Phys. Radium (1)

F. Abelès, “La dètermination de l’indice et de l’epaineur des couches minces transparentes,” J. Phys. Radium 11, 310 (1950).
[CrossRef]

Opt. Eng. (1)

A. R. Reisinger, H. B. Morris, K. L. Lawley, “Alternative to Ellipsometry for Characterizing Transparent Planar Thin Films,” Opt. Eng. 20, 111 (1981).
[CrossRef]

Other (4)

Kodak Micro Resist 747, Publication No. P-306 (1975).

L. I. Maissel, R. Glang, Eds., Handbook of Thin Film Technology (McGraw-Hill, New York, 1970), p. 7–26.

For electron beam deposition of amorphous SiO2 at λ = 5500 Å as reported by G. Hass, M. H. Francombe, R. W. Hoffman, Eds., Physics of Thin Films (Academic, New York, 1975), Vol. 8, p. 29.

M. Françon, Progress in Microscopy (Row, Paterson, & Elmsford, New York, 1961), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Film (F) and substrate (S) arrangement in relation to the incident laser light. When the angle of incidence θ corresponds to the film–air interface Brewster angle θB, the light reflected from the coated substrate (IFS) matches with that reflected from the uncoated substrate (IS) and the light reflected from the film–air interface (IF) becomes negligible. In the actual experimental setup, the groove on the film is approximately parallel to the incidence plane.

Fig. 2
Fig. 2

Brewster angle matching for an AZ-1350J photoresist film coated on a 1.5-mm thick glass (sample No. 5 in Table I). Light incident on the substrate–air interface (setup in Fig. 3): (a) 10 min of arc before the Brewster angle, (b) at the Brewster angle, and (c) 10 min of arc after the Brewster angle. The Brewster angle matched using light incident on the film–air interface is shown in (d). Note that the matching is very difficult compared with (b) because of the interference fringes throughout the whole field of view and the diffraction of the groove borders.

Fig. 3
Fig. 3

Experimental setup. The laser light is incident on the glass–air interface instead of on the film–air interface as in the classical setup. The laser spatial filter is composed of an objective lens (A) and conjugated pinhole (B). The light is collimated by lens C and adequately polarized by polarizer D, before incidence on substrate S. The film is coated on the opposite side and a groove is provided approximately parallel to the incidence plane; the whole is fixed on a rotating stage RS having a precision of 1 min of arc. The reflected light is observed on screen R.

Tables (1)

Tables Icon

Table I Experimental Results

Metrics