Abstract

In this paper, we propose an integrated optical isolator and circulator using nonreciprocal phase shifters combined with Y-branch couplers or hybrid couplers. They are not used in mode coupling between orthogonally polarized waves, which leads to reduce the fabrication tolerance. We present a design example using the guide structure of YIG film and GGG substrate.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Iwasaki, S. Hayashi, H. Iwasaki, “A Compact Optical Isolator Using a Y3Fe5O12 Crystal for Near Infra-red Radiation,” Opt. Quantum Electron. 10, 392 (1978).
  2. S. Saito, Y. Yamamoto, T. Kimura, “Optical FSK Heterodyne Detection Experiments Using Semiconductor Laser Transmitter and Local Oscillator,” IEEE J. Quantum Electron. QE-17, 935 (1981).
    [CrossRef]
  3. J. P. Castera, G. Hepner, “Isolator in Integrated Optics Using Faraday and Cotton-Mouton Effects,” Appl. Opt. 16, 2031 (1977).
    [CrossRef] [PubMed]
  4. S. T. Kirsch, W. A. Biolsi, S. L. Blank, P. K. Tien, R. J. Martin, P. M. Bridenbaugh, P. Grabbe, “Semileaky Thin-Film Optical Isolator,” J. Appl. Phys. 52, 3190(1981).
    [CrossRef]
  5. S. Yamamoto, Y. Okamura, T. Makimoto, “Analysis and Design of Semileaky-Type Thin-Film Optical Waveguide Isolator,” IEEE J. Quantum Electron. QE-12, 764 (1976).
    [CrossRef]
  6. J. Warner, “Nonreciprocal Magnetooptic Waveguides,” IEEE Trans. Microwave Theory Tech. MTT-23, 70 (1975).
    [CrossRef]
  7. S. Yamamoto, T. Makimoto, “Circuit Theory for a Class of Anisotropic and Gyrotropic Thin-Film Optical Waveguides and Design of Nonreciprocal Devices for Integrated Optics,” J. Appl. Phys. 45, 882 (1974).
    [CrossRef]
  8. P. Hlawiczka, “Gyrotropic Waveguide Switching Elements at Optical Wavelengths,” Electron. Lett. 15, 110 (1979).
    [CrossRef]
  9. T. Mizumoto, Y. Naito, “Nonreciprocal Propagation Characteristics of YIG Thin Film,” IEEE Trans. Microwave Theory Tech. MTT-30, 922 (1982).
    [CrossRef]
  10. H. Sasaki, I. Anderson, “Theoretical and Experimental Studies on Active Y-junctions in Optical Waveguides,” IEEE J. Quantum Electron QE-14, 883 (1978).
    [CrossRef]
  11. W. K. Burns, A. T. Milton, “An Analytic Solution for Mode Coupling in Optical Waveguide Branches,” IEEE J. Quantum Electron QE-16, 446 (1980).
    [CrossRef]
  12. V. Ramaswamy, “Strip-Loaded Film Waveguide,” Bell Syst. Tech. J. 53, 697 (1974).
  13. Y. Okamura, M. Ishida, S. Yamamoto, “Magnetooptic Rib Waveguides in YIG: an Experiment,” Appl. Opt. 23, 124 (1984).
    [CrossRef] [PubMed]

1984

1982

T. Mizumoto, Y. Naito, “Nonreciprocal Propagation Characteristics of YIG Thin Film,” IEEE Trans. Microwave Theory Tech. MTT-30, 922 (1982).
[CrossRef]

1981

S. T. Kirsch, W. A. Biolsi, S. L. Blank, P. K. Tien, R. J. Martin, P. M. Bridenbaugh, P. Grabbe, “Semileaky Thin-Film Optical Isolator,” J. Appl. Phys. 52, 3190(1981).
[CrossRef]

S. Saito, Y. Yamamoto, T. Kimura, “Optical FSK Heterodyne Detection Experiments Using Semiconductor Laser Transmitter and Local Oscillator,” IEEE J. Quantum Electron. QE-17, 935 (1981).
[CrossRef]

1980

W. K. Burns, A. T. Milton, “An Analytic Solution for Mode Coupling in Optical Waveguide Branches,” IEEE J. Quantum Electron QE-16, 446 (1980).
[CrossRef]

1979

P. Hlawiczka, “Gyrotropic Waveguide Switching Elements at Optical Wavelengths,” Electron. Lett. 15, 110 (1979).
[CrossRef]

1978

H. Iwasaki, S. Hayashi, H. Iwasaki, “A Compact Optical Isolator Using a Y3Fe5O12 Crystal for Near Infra-red Radiation,” Opt. Quantum Electron. 10, 392 (1978).

H. Sasaki, I. Anderson, “Theoretical and Experimental Studies on Active Y-junctions in Optical Waveguides,” IEEE J. Quantum Electron QE-14, 883 (1978).
[CrossRef]

1977

1976

S. Yamamoto, Y. Okamura, T. Makimoto, “Analysis and Design of Semileaky-Type Thin-Film Optical Waveguide Isolator,” IEEE J. Quantum Electron. QE-12, 764 (1976).
[CrossRef]

1975

J. Warner, “Nonreciprocal Magnetooptic Waveguides,” IEEE Trans. Microwave Theory Tech. MTT-23, 70 (1975).
[CrossRef]

1974

S. Yamamoto, T. Makimoto, “Circuit Theory for a Class of Anisotropic and Gyrotropic Thin-Film Optical Waveguides and Design of Nonreciprocal Devices for Integrated Optics,” J. Appl. Phys. 45, 882 (1974).
[CrossRef]

V. Ramaswamy, “Strip-Loaded Film Waveguide,” Bell Syst. Tech. J. 53, 697 (1974).

Anderson, I.

H. Sasaki, I. Anderson, “Theoretical and Experimental Studies on Active Y-junctions in Optical Waveguides,” IEEE J. Quantum Electron QE-14, 883 (1978).
[CrossRef]

Biolsi, W. A.

S. T. Kirsch, W. A. Biolsi, S. L. Blank, P. K. Tien, R. J. Martin, P. M. Bridenbaugh, P. Grabbe, “Semileaky Thin-Film Optical Isolator,” J. Appl. Phys. 52, 3190(1981).
[CrossRef]

Blank, S. L.

S. T. Kirsch, W. A. Biolsi, S. L. Blank, P. K. Tien, R. J. Martin, P. M. Bridenbaugh, P. Grabbe, “Semileaky Thin-Film Optical Isolator,” J. Appl. Phys. 52, 3190(1981).
[CrossRef]

Bridenbaugh, P. M.

S. T. Kirsch, W. A. Biolsi, S. L. Blank, P. K. Tien, R. J. Martin, P. M. Bridenbaugh, P. Grabbe, “Semileaky Thin-Film Optical Isolator,” J. Appl. Phys. 52, 3190(1981).
[CrossRef]

Burns, W. K.

W. K. Burns, A. T. Milton, “An Analytic Solution for Mode Coupling in Optical Waveguide Branches,” IEEE J. Quantum Electron QE-16, 446 (1980).
[CrossRef]

Castera, J. P.

Grabbe, P.

S. T. Kirsch, W. A. Biolsi, S. L. Blank, P. K. Tien, R. J. Martin, P. M. Bridenbaugh, P. Grabbe, “Semileaky Thin-Film Optical Isolator,” J. Appl. Phys. 52, 3190(1981).
[CrossRef]

Hayashi, S.

H. Iwasaki, S. Hayashi, H. Iwasaki, “A Compact Optical Isolator Using a Y3Fe5O12 Crystal for Near Infra-red Radiation,” Opt. Quantum Electron. 10, 392 (1978).

Hepner, G.

Hlawiczka, P.

P. Hlawiczka, “Gyrotropic Waveguide Switching Elements at Optical Wavelengths,” Electron. Lett. 15, 110 (1979).
[CrossRef]

Ishida, M.

Iwasaki, H.

H. Iwasaki, S. Hayashi, H. Iwasaki, “A Compact Optical Isolator Using a Y3Fe5O12 Crystal for Near Infra-red Radiation,” Opt. Quantum Electron. 10, 392 (1978).

H. Iwasaki, S. Hayashi, H. Iwasaki, “A Compact Optical Isolator Using a Y3Fe5O12 Crystal for Near Infra-red Radiation,” Opt. Quantum Electron. 10, 392 (1978).

Kimura, T.

S. Saito, Y. Yamamoto, T. Kimura, “Optical FSK Heterodyne Detection Experiments Using Semiconductor Laser Transmitter and Local Oscillator,” IEEE J. Quantum Electron. QE-17, 935 (1981).
[CrossRef]

Kirsch, S. T.

S. T. Kirsch, W. A. Biolsi, S. L. Blank, P. K. Tien, R. J. Martin, P. M. Bridenbaugh, P. Grabbe, “Semileaky Thin-Film Optical Isolator,” J. Appl. Phys. 52, 3190(1981).
[CrossRef]

Makimoto, T.

S. Yamamoto, Y. Okamura, T. Makimoto, “Analysis and Design of Semileaky-Type Thin-Film Optical Waveguide Isolator,” IEEE J. Quantum Electron. QE-12, 764 (1976).
[CrossRef]

S. Yamamoto, T. Makimoto, “Circuit Theory for a Class of Anisotropic and Gyrotropic Thin-Film Optical Waveguides and Design of Nonreciprocal Devices for Integrated Optics,” J. Appl. Phys. 45, 882 (1974).
[CrossRef]

Martin, R. J.

S. T. Kirsch, W. A. Biolsi, S. L. Blank, P. K. Tien, R. J. Martin, P. M. Bridenbaugh, P. Grabbe, “Semileaky Thin-Film Optical Isolator,” J. Appl. Phys. 52, 3190(1981).
[CrossRef]

Milton, A. T.

W. K. Burns, A. T. Milton, “An Analytic Solution for Mode Coupling in Optical Waveguide Branches,” IEEE J. Quantum Electron QE-16, 446 (1980).
[CrossRef]

Mizumoto, T.

T. Mizumoto, Y. Naito, “Nonreciprocal Propagation Characteristics of YIG Thin Film,” IEEE Trans. Microwave Theory Tech. MTT-30, 922 (1982).
[CrossRef]

Naito, Y.

T. Mizumoto, Y. Naito, “Nonreciprocal Propagation Characteristics of YIG Thin Film,” IEEE Trans. Microwave Theory Tech. MTT-30, 922 (1982).
[CrossRef]

Okamura, Y.

Y. Okamura, M. Ishida, S. Yamamoto, “Magnetooptic Rib Waveguides in YIG: an Experiment,” Appl. Opt. 23, 124 (1984).
[CrossRef] [PubMed]

S. Yamamoto, Y. Okamura, T. Makimoto, “Analysis and Design of Semileaky-Type Thin-Film Optical Waveguide Isolator,” IEEE J. Quantum Electron. QE-12, 764 (1976).
[CrossRef]

Ramaswamy, V.

V. Ramaswamy, “Strip-Loaded Film Waveguide,” Bell Syst. Tech. J. 53, 697 (1974).

Saito, S.

S. Saito, Y. Yamamoto, T. Kimura, “Optical FSK Heterodyne Detection Experiments Using Semiconductor Laser Transmitter and Local Oscillator,” IEEE J. Quantum Electron. QE-17, 935 (1981).
[CrossRef]

Sasaki, H.

H. Sasaki, I. Anderson, “Theoretical and Experimental Studies on Active Y-junctions in Optical Waveguides,” IEEE J. Quantum Electron QE-14, 883 (1978).
[CrossRef]

Tien, P. K.

S. T. Kirsch, W. A. Biolsi, S. L. Blank, P. K. Tien, R. J. Martin, P. M. Bridenbaugh, P. Grabbe, “Semileaky Thin-Film Optical Isolator,” J. Appl. Phys. 52, 3190(1981).
[CrossRef]

Warner, J.

J. Warner, “Nonreciprocal Magnetooptic Waveguides,” IEEE Trans. Microwave Theory Tech. MTT-23, 70 (1975).
[CrossRef]

Yamamoto, S.

Y. Okamura, M. Ishida, S. Yamamoto, “Magnetooptic Rib Waveguides in YIG: an Experiment,” Appl. Opt. 23, 124 (1984).
[CrossRef] [PubMed]

S. Yamamoto, Y. Okamura, T. Makimoto, “Analysis and Design of Semileaky-Type Thin-Film Optical Waveguide Isolator,” IEEE J. Quantum Electron. QE-12, 764 (1976).
[CrossRef]

S. Yamamoto, T. Makimoto, “Circuit Theory for a Class of Anisotropic and Gyrotropic Thin-Film Optical Waveguides and Design of Nonreciprocal Devices for Integrated Optics,” J. Appl. Phys. 45, 882 (1974).
[CrossRef]

Yamamoto, Y.

S. Saito, Y. Yamamoto, T. Kimura, “Optical FSK Heterodyne Detection Experiments Using Semiconductor Laser Transmitter and Local Oscillator,” IEEE J. Quantum Electron. QE-17, 935 (1981).
[CrossRef]

Appl. Opt.

Bell Syst. Tech. J.

V. Ramaswamy, “Strip-Loaded Film Waveguide,” Bell Syst. Tech. J. 53, 697 (1974).

Electron. Lett.

P. Hlawiczka, “Gyrotropic Waveguide Switching Elements at Optical Wavelengths,” Electron. Lett. 15, 110 (1979).
[CrossRef]

IEEE J. Quantum Electron

H. Sasaki, I. Anderson, “Theoretical and Experimental Studies on Active Y-junctions in Optical Waveguides,” IEEE J. Quantum Electron QE-14, 883 (1978).
[CrossRef]

W. K. Burns, A. T. Milton, “An Analytic Solution for Mode Coupling in Optical Waveguide Branches,” IEEE J. Quantum Electron QE-16, 446 (1980).
[CrossRef]

IEEE J. Quantum Electron.

S. Yamamoto, Y. Okamura, T. Makimoto, “Analysis and Design of Semileaky-Type Thin-Film Optical Waveguide Isolator,” IEEE J. Quantum Electron. QE-12, 764 (1976).
[CrossRef]

S. Saito, Y. Yamamoto, T. Kimura, “Optical FSK Heterodyne Detection Experiments Using Semiconductor Laser Transmitter and Local Oscillator,” IEEE J. Quantum Electron. QE-17, 935 (1981).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

J. Warner, “Nonreciprocal Magnetooptic Waveguides,” IEEE Trans. Microwave Theory Tech. MTT-23, 70 (1975).
[CrossRef]

T. Mizumoto, Y. Naito, “Nonreciprocal Propagation Characteristics of YIG Thin Film,” IEEE Trans. Microwave Theory Tech. MTT-30, 922 (1982).
[CrossRef]

J. Appl. Phys.

S. Yamamoto, T. Makimoto, “Circuit Theory for a Class of Anisotropic and Gyrotropic Thin-Film Optical Waveguides and Design of Nonreciprocal Devices for Integrated Optics,” J. Appl. Phys. 45, 882 (1974).
[CrossRef]

S. T. Kirsch, W. A. Biolsi, S. L. Blank, P. K. Tien, R. J. Martin, P. M. Bridenbaugh, P. Grabbe, “Semileaky Thin-Film Optical Isolator,” J. Appl. Phys. 52, 3190(1981).
[CrossRef]

Opt. Quantum Electron.

H. Iwasaki, S. Hayashi, H. Iwasaki, “A Compact Optical Isolator Using a Y3Fe5O12 Crystal for Near Infra-red Radiation,” Opt. Quantum Electron. 10, 392 (1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Guided-wave type isolator with symmetric Y-branch couplers and nonreciprocal phase shifters. Length of the branch guide Ga is longer than that of the guide Gb.

Fig. 2
Fig. 2

Transverse field profiles at different positions of the guides of the isolator in Fig. 1 for (a) the forward wave and (b) the backward wave. γf and γb are the phase shifts of forward and backward waves, respectively. Phase difference between the branch guides Ga and Gb is −π/2.

Fig. 3
Fig. 3

Guided-wave type circulator with hybrid couplers and non-reciprocal phase shifters. Length of the branch guide Ga is longer than that of the guide Gb.

Fig. 4
Fig. 4

Transverse field profiles at different positions of guides of the circulator in Fig. 3 incident from (a) A of the wide guide of the coupler HI, (b) B of the wide guide of the coupler HII, (c) C of the narrow guide of the coupler HI, and (d) D of the narrow guide of the coupler HII. Phase relation is the same as that of the isolator.

Fig. 5
Fig. 5

Configuration of the rib waveguide for the nonreciprocal phase shifter design.

Fig. 6
Fig. 6

Optimum film thickness and length of the phase shifter to obtain the π/4 phase shift vs the refractive index of the cover layer.

Fig. 7
Fig. 7

Phase shift as a function of the channel width at the optimum guide thickness. The cover layer is air and the rib height is a parameter.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ = 2 ω ɛ 0 0 d Re ( K x z F e x * e z ) d x ,

Metrics