Abstract

Measurements of solar irradiance at the ground have been analyzed to obtain information on absorption from water vapor in the visible and near infrared. Great care has been taken in evaluating the aerosol optical thickness to obtain results compatible with theory. An automatic procedure is presented that eliminates the recordings in which modifications of the aerosol optical properties not monitored would seriously influence the determination of those of water vapor. Particular care is paid to assessing the error limits of the derived spectral attenuation parameters.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Howard, D. E. Burch, D. Williams, Scientific Report No. 1. Contract AF19(604)-516, Ohio State Research Foundation (1954).
  2. D. E. Burch, D. Gryvnak “Absorption by H2O between 5045–14485 cm−1 (0.69–1.98 Microns),” Contract NORT-3560 (00), Aeronutronic Publication Nr. 3704 (1966).
  3. F. E. Fowle, “The Transparency of Aqueous Vapour,” Astrophys. J. 42, 394 (1915).
    [CrossRef]
  4. R. G. Eldridge, “Water Vapor Absorption of Visible and Near Infrared Radiation,” Appl. Opt. 6, 709 (1967).
    [CrossRef] [PubMed]
  5. R. Guzzi, C. Tomasi, O. Vittori, “Evidence of Particolate Extinction in the Near Infrared Spectrum of the Sun,” J. Atmos. Sci. 29, 517 (1972).
    [CrossRef]
  6. O. Vittori, C. Tomasi, R. Guzzi, “Dessens’ Droplets in the Near and Middle Infared Spectrum of the Sun,” J. Atmos. Sci. 31, 261 (1974).
    [CrossRef]
  7. C. Tomasi, R. Guzzi, O. Vittori, “A Search for the e-effect in the Atmospheric Water Vapor Continuum,” J. Atmos. Sci. 31, 255 (1974).
    [CrossRef]
  8. R. S. Fraser, “Degree of Interdependence among Atmospheric Optical Thicknesses in Spectral Bands between 0.36–2.4μm,” J. Appl. Meteorol. 14, 1187 (1975).
    [CrossRef]
  9. C. Tomasi, “Non Selective Absorption by Atmospheric Water Vapour at Visible and Near Infrared Wavelengths,” Q. J. R. Meteorol. Soc. 105, 1027 (1979).
    [CrossRef]
  10. N. L. Moskalenko, “The Spectral Transmission Function in the Bands of Water Vapor, O3, N2O and N2 Atmospheric Components,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 5, 678 (1969), english edition.
  11. P. Koepke, H. Quenzel, “Water Vapor: Spectral Transmission at Wavelengths Between 0.7 μm and 1 μm,” Appl. Opt. 17, 2114 (1978).
    [CrossRef] [PubMed]
  12. F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwind, L. W. Abrew, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).
  13. R. Guzzi, R. Rizzi, S. Vindigni, in Proceedings, Second International Solar Forum, Hamburg, 179 (1978).
  14. R. Guzzi, G. Lo Vecchio, R. Rizzi, “Experimental Validation of a Spectral Direct Solar Radiation Model,” Sol. Energy 31, 359 (1983).
    [CrossRef]
  15. R. Rizzi, R. Guzzi, R. Legnani, “Aerosol Size Spectra from Spectral Extinction Data: The Use of a Linear Inversion Method,” Appl. Opt. 21, 1578 (1982).
    [CrossRef] [PubMed]
  16. C. Tomasi, R. Guzzi, “High Precision Atmospheric Hygrometry using the Solar Infrared Spectrum,” J. Phys. E 7, 647 (1974).
    [CrossRef]
  17. R. Goody, “A Statistical Model for Water Vapour Absorption,” Q. J. R. Meteorol. Soc. 78, 165 (1952).
    [CrossRef]
  18. D. M. Gates, W. J. Harrop, “Infrared Transmission of the Atmosphere to Solar Radiation,” Appl. Opt. 2, 887 (1963).
  19. F. James, M. Ross, minuit, CERN Computer Center, Data Handling Division, Geneve (1977).

1983

R. Guzzi, G. Lo Vecchio, R. Rizzi, “Experimental Validation of a Spectral Direct Solar Radiation Model,” Sol. Energy 31, 359 (1983).
[CrossRef]

1982

1979

C. Tomasi, “Non Selective Absorption by Atmospheric Water Vapour at Visible and Near Infrared Wavelengths,” Q. J. R. Meteorol. Soc. 105, 1027 (1979).
[CrossRef]

1978

1975

R. S. Fraser, “Degree of Interdependence among Atmospheric Optical Thicknesses in Spectral Bands between 0.36–2.4μm,” J. Appl. Meteorol. 14, 1187 (1975).
[CrossRef]

1974

C. Tomasi, R. Guzzi, “High Precision Atmospheric Hygrometry using the Solar Infrared Spectrum,” J. Phys. E 7, 647 (1974).
[CrossRef]

O. Vittori, C. Tomasi, R. Guzzi, “Dessens’ Droplets in the Near and Middle Infared Spectrum of the Sun,” J. Atmos. Sci. 31, 261 (1974).
[CrossRef]

C. Tomasi, R. Guzzi, O. Vittori, “A Search for the e-effect in the Atmospheric Water Vapor Continuum,” J. Atmos. Sci. 31, 255 (1974).
[CrossRef]

1972

R. Guzzi, C. Tomasi, O. Vittori, “Evidence of Particolate Extinction in the Near Infrared Spectrum of the Sun,” J. Atmos. Sci. 29, 517 (1972).
[CrossRef]

1969

N. L. Moskalenko, “The Spectral Transmission Function in the Bands of Water Vapor, O3, N2O and N2 Atmospheric Components,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 5, 678 (1969), english edition.

1967

1966

D. E. Burch, D. Gryvnak “Absorption by H2O between 5045–14485 cm−1 (0.69–1.98 Microns),” Contract NORT-3560 (00), Aeronutronic Publication Nr. 3704 (1966).

1963

1952

R. Goody, “A Statistical Model for Water Vapour Absorption,” Q. J. R. Meteorol. Soc. 78, 165 (1952).
[CrossRef]

1915

F. E. Fowle, “The Transparency of Aqueous Vapour,” Astrophys. J. 42, 394 (1915).
[CrossRef]

Abrew, L. W.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwind, L. W. Abrew, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

Burch, D. E.

D. E. Burch, D. Gryvnak “Absorption by H2O between 5045–14485 cm−1 (0.69–1.98 Microns),” Contract NORT-3560 (00), Aeronutronic Publication Nr. 3704 (1966).

J. H. Howard, D. E. Burch, D. Williams, Scientific Report No. 1. Contract AF19(604)-516, Ohio State Research Foundation (1954).

Chetwind, J. H.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwind, L. W. Abrew, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

Eldridge, R. G.

Fenn, R. W.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwind, L. W. Abrew, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

Fowle, F. E.

F. E. Fowle, “The Transparency of Aqueous Vapour,” Astrophys. J. 42, 394 (1915).
[CrossRef]

Fraser, R. S.

R. S. Fraser, “Degree of Interdependence among Atmospheric Optical Thicknesses in Spectral Bands between 0.36–2.4μm,” J. Appl. Meteorol. 14, 1187 (1975).
[CrossRef]

Gallery, W. O.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwind, L. W. Abrew, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

Gates, D. M.

Goody, R.

R. Goody, “A Statistical Model for Water Vapour Absorption,” Q. J. R. Meteorol. Soc. 78, 165 (1952).
[CrossRef]

Gryvnak, D.

D. E. Burch, D. Gryvnak “Absorption by H2O between 5045–14485 cm−1 (0.69–1.98 Microns),” Contract NORT-3560 (00), Aeronutronic Publication Nr. 3704 (1966).

Guzzi, R.

R. Guzzi, G. Lo Vecchio, R. Rizzi, “Experimental Validation of a Spectral Direct Solar Radiation Model,” Sol. Energy 31, 359 (1983).
[CrossRef]

R. Rizzi, R. Guzzi, R. Legnani, “Aerosol Size Spectra from Spectral Extinction Data: The Use of a Linear Inversion Method,” Appl. Opt. 21, 1578 (1982).
[CrossRef] [PubMed]

C. Tomasi, R. Guzzi, “High Precision Atmospheric Hygrometry using the Solar Infrared Spectrum,” J. Phys. E 7, 647 (1974).
[CrossRef]

O. Vittori, C. Tomasi, R. Guzzi, “Dessens’ Droplets in the Near and Middle Infared Spectrum of the Sun,” J. Atmos. Sci. 31, 261 (1974).
[CrossRef]

C. Tomasi, R. Guzzi, O. Vittori, “A Search for the e-effect in the Atmospheric Water Vapor Continuum,” J. Atmos. Sci. 31, 255 (1974).
[CrossRef]

R. Guzzi, C. Tomasi, O. Vittori, “Evidence of Particolate Extinction in the Near Infrared Spectrum of the Sun,” J. Atmos. Sci. 29, 517 (1972).
[CrossRef]

R. Guzzi, R. Rizzi, S. Vindigni, in Proceedings, Second International Solar Forum, Hamburg, 179 (1978).

Harrop, W. J.

Howard, J. H.

J. H. Howard, D. E. Burch, D. Williams, Scientific Report No. 1. Contract AF19(604)-516, Ohio State Research Foundation (1954).

James, F.

F. James, M. Ross, minuit, CERN Computer Center, Data Handling Division, Geneve (1977).

Kneizys, F. X.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwind, L. W. Abrew, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

Koepke, P.

Legnani, R.

Lo Vecchio, G.

R. Guzzi, G. Lo Vecchio, R. Rizzi, “Experimental Validation of a Spectral Direct Solar Radiation Model,” Sol. Energy 31, 359 (1983).
[CrossRef]

McClatchey, R. A.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwind, L. W. Abrew, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

Moskalenko, N. L.

N. L. Moskalenko, “The Spectral Transmission Function in the Bands of Water Vapor, O3, N2O and N2 Atmospheric Components,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 5, 678 (1969), english edition.

Quenzel, H.

Rizzi, R.

R. Guzzi, G. Lo Vecchio, R. Rizzi, “Experimental Validation of a Spectral Direct Solar Radiation Model,” Sol. Energy 31, 359 (1983).
[CrossRef]

R. Rizzi, R. Guzzi, R. Legnani, “Aerosol Size Spectra from Spectral Extinction Data: The Use of a Linear Inversion Method,” Appl. Opt. 21, 1578 (1982).
[CrossRef] [PubMed]

R. Guzzi, R. Rizzi, S. Vindigni, in Proceedings, Second International Solar Forum, Hamburg, 179 (1978).

Ross, M.

F. James, M. Ross, minuit, CERN Computer Center, Data Handling Division, Geneve (1977).

Selby, J. E. A.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwind, L. W. Abrew, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

Shettle, E. P.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwind, L. W. Abrew, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

Tomasi, C.

C. Tomasi, “Non Selective Absorption by Atmospheric Water Vapour at Visible and Near Infrared Wavelengths,” Q. J. R. Meteorol. Soc. 105, 1027 (1979).
[CrossRef]

O. Vittori, C. Tomasi, R. Guzzi, “Dessens’ Droplets in the Near and Middle Infared Spectrum of the Sun,” J. Atmos. Sci. 31, 261 (1974).
[CrossRef]

C. Tomasi, R. Guzzi, O. Vittori, “A Search for the e-effect in the Atmospheric Water Vapor Continuum,” J. Atmos. Sci. 31, 255 (1974).
[CrossRef]

C. Tomasi, R. Guzzi, “High Precision Atmospheric Hygrometry using the Solar Infrared Spectrum,” J. Phys. E 7, 647 (1974).
[CrossRef]

R. Guzzi, C. Tomasi, O. Vittori, “Evidence of Particolate Extinction in the Near Infrared Spectrum of the Sun,” J. Atmos. Sci. 29, 517 (1972).
[CrossRef]

Vindigni, S.

R. Guzzi, R. Rizzi, S. Vindigni, in Proceedings, Second International Solar Forum, Hamburg, 179 (1978).

Vittori, O.

C. Tomasi, R. Guzzi, O. Vittori, “A Search for the e-effect in the Atmospheric Water Vapor Continuum,” J. Atmos. Sci. 31, 255 (1974).
[CrossRef]

O. Vittori, C. Tomasi, R. Guzzi, “Dessens’ Droplets in the Near and Middle Infared Spectrum of the Sun,” J. Atmos. Sci. 31, 261 (1974).
[CrossRef]

R. Guzzi, C. Tomasi, O. Vittori, “Evidence of Particolate Extinction in the Near Infrared Spectrum of the Sun,” J. Atmos. Sci. 29, 517 (1972).
[CrossRef]

Williams, D.

J. H. Howard, D. E. Burch, D. Williams, Scientific Report No. 1. Contract AF19(604)-516, Ohio State Research Foundation (1954).

Appl. Opt.

Astrophys. J.

F. E. Fowle, “The Transparency of Aqueous Vapour,” Astrophys. J. 42, 394 (1915).
[CrossRef]

Contract NORT-3560 (00), Aeronutronic Publication Nr. 3704

D. E. Burch, D. Gryvnak “Absorption by H2O between 5045–14485 cm−1 (0.69–1.98 Microns),” Contract NORT-3560 (00), Aeronutronic Publication Nr. 3704 (1966).

Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana

N. L. Moskalenko, “The Spectral Transmission Function in the Bands of Water Vapor, O3, N2O and N2 Atmospheric Components,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 5, 678 (1969), english edition.

J. Appl. Meteorol.

R. S. Fraser, “Degree of Interdependence among Atmospheric Optical Thicknesses in Spectral Bands between 0.36–2.4μm,” J. Appl. Meteorol. 14, 1187 (1975).
[CrossRef]

J. Atmos. Sci.

R. Guzzi, C. Tomasi, O. Vittori, “Evidence of Particolate Extinction in the Near Infrared Spectrum of the Sun,” J. Atmos. Sci. 29, 517 (1972).
[CrossRef]

O. Vittori, C. Tomasi, R. Guzzi, “Dessens’ Droplets in the Near and Middle Infared Spectrum of the Sun,” J. Atmos. Sci. 31, 261 (1974).
[CrossRef]

C. Tomasi, R. Guzzi, O. Vittori, “A Search for the e-effect in the Atmospheric Water Vapor Continuum,” J. Atmos. Sci. 31, 255 (1974).
[CrossRef]

J. Phys. E

C. Tomasi, R. Guzzi, “High Precision Atmospheric Hygrometry using the Solar Infrared Spectrum,” J. Phys. E 7, 647 (1974).
[CrossRef]

Q. J. R. Meteorol. Soc.

R. Goody, “A Statistical Model for Water Vapour Absorption,” Q. J. R. Meteorol. Soc. 78, 165 (1952).
[CrossRef]

C. Tomasi, “Non Selective Absorption by Atmospheric Water Vapour at Visible and Near Infrared Wavelengths,” Q. J. R. Meteorol. Soc. 105, 1027 (1979).
[CrossRef]

Sol. Energy

R. Guzzi, G. Lo Vecchio, R. Rizzi, “Experimental Validation of a Spectral Direct Solar Radiation Model,” Sol. Energy 31, 359 (1983).
[CrossRef]

Other

J. H. Howard, D. E. Burch, D. Williams, Scientific Report No. 1. Contract AF19(604)-516, Ohio State Research Foundation (1954).

F. James, M. Ross, minuit, CERN Computer Center, Data Handling Division, Geneve (1977).

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwind, L. W. Abrew, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” AFGL-TR-80-0067 (1980).

R. Guzzi, R. Rizzi, S. Vindigni, in Proceedings, Second International Solar Forum, Hamburg, 179 (1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Example of strip-chart recording giving deflection of the recorded D (arbitrary units) versus wavelength in microns on 24 Aug. 1971. At the beginning of the reading air mass is 1.73, relative humidity is 43, screen temperature is 24°C, ground pressure is 1015 mbar, and precipitable water is 14-mm (STP). The curve labeled D0 is the extra atmospheric deflection of the instrument.

Fig. 2
Fig. 2

Water vapor transmittivity in percent vs wave number ν(α band). Precipitable water is 50-mm (STP). The dashed line is the transmittivity computed using the data in Table I. For comparison transmissivity computed using lowtran 5 is drawn.

Fig. 3
Fig. 3

Same as Fig. 2 for the 0.8 H2O band.

Fig. 4
Fig. 4

Same as Fig. 2 for the ρστ H2O band.

Fig. 5
Fig. 5

Retrieved values of c (dots) as a function of wavelengths λ and associated one standard deviation. Mean (relative to 10-km visual range) particulate-matter optical thickness τ0 is also drawn (triangles).

Fig. 6
Fig. 6

Relative transmissivity Tp as a function of water vapor content at wn = 32 and 35.

Tables (1)

Tables Icon

Table I Parameters a and b and the Associated Errors are Written with a Number of Digits Which Exceeds by One the Number of Significant Digits

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

D ( λ ) = R ( λ ) F 0 ( λ ) exp [ - σ ( λ ) ] T R ( λ ) T m g ( λ ) T O 3 ( λ ) ,
σ ( λ ) = ln D 0 T R T O 3 T m g D .
σ w = S w m w 2 π δ ( 1 + S w m w π α ) - 1 / 2 ,
σ w = a 1 ( m w w ) 1 / 2             S w m w π α 1 , σ w = a 2 ( m w w )             S w m w π α 1 ,
σ w = a ( w m w ) b .
σ = a ( w m w ) b + τ a m a ,
β H ( 0.55 ) = 3.912 R - β m ( 0.55 ) ,
β H ( 0.55 ) = C n ( r ) π r 2 Q e ( 0.55 ) d r = C β N ( 0.55 ) ,
C = β H ( 0.55 ) β N ( 0.55 ) .
τ v ( λ ) = n ( r , h ) π r 2 Q e d r d h ,
τ v ( λ ) = C H n ( r ) π r 2 Q e d r = C H β N ( λ ) ,
τ v ( λ , R ) = H β H ( 0.55 ) β N ( λ ) β N ( 0.55 ) .
F ( R , R o ) = τ v ( λ , R ) τ v ( λ , R o ) = β H A ,
τ c ( λ ) = τ 0 ( τ ) ( 3.912 A 1 R i - β m A ) ,
P i J = τ a ( λ J ) - τ c ( λ J ) τ a ( λ J )
R av i = 1 M 1 M R J i J ,
R i J = 3.912 A [ β m A + τ a ( λ J ) τ 0 ( λ J ) ] ;
σ c i = a ( w i m w i ) b + c F ( R e i , R o ) m a i ;
χ 2 = 1 N i ( σ i - σ c i ) 2 μ i 2 ,
μ i 2 = 1 D 0 2 μ 0 2 + 1 T R 2 μ R 2 + 1 T O 3 2 μ O 3 2 + 1 T m g 2 μ m g 2 + 1 D 2 μ D 2 ,
χ 2 = i [ σ i - p 1 w i m w i ( 1 + p 2 w i m w i ) - 1 / 2 ] 2 μ i 2 ,
T p = T m ( λ ) - T g ( λ ) T g ( λ )
χ ν 2 = χ 2 / ν ,
χ ν 2 = S μ ¯ 2 ,             μ ¯ 2 = 1 1 2 1 μ ¯ i 2 .
μ i = f J μ i ,             f J = χ J 2

Metrics