Abstract

A remote chemical sensor using a single optical fiber has been developed for collecting evanescently excited spectral signals from liquid samples. The sensor is particularly useful for the study of species adsorbed from solution onto the sensor surface. Fluorescence spectra were taken from dye solutions and dye-labeled proteins to demonstrate the evanescent operation of the probe. Raman data from benzene were collected to indicate its sensitivity in the bulk mode.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Hirschfeld, D. C. Johnson, G. R. Haugen, L. W. Hrubesh, Abstracts, 179th National Meeting of the American Chemical Society (American Chemical Society, Washington, D.C., 1980), ANAL-134.
  2. A. C. Eckbreth, “Remote Detection of CARS Employing Fiber Optic Guides,” Appl. Opt. 18, 3215 (1979).
    [CrossRef] [PubMed]
  3. R. E. Benner, R. K. Chang, in Fiber Optics: Advances in Research and Development, B. Bendow, S. S. Mitra, Eds. (Plenum, New York, 1979), p. 625.
  4. T. H. Maugh, “Remote Spectrometry with Fiber Optics,” Science 218, 875 (1982).
    [CrossRef] [PubMed]
  5. S. A. Borman, “Optrodes,” Anal. Chem. 53, 1616A (1981).
  6. E.-H. Lee, R. E. Benner, J. B. Fenn, R. K. Chang, “Angular Distribution of Fluorescence from Liquids and Monodispersed Spheres by Evanescent Wave Excitation,” Appl. Opt. 18, 862 (1979).
    [CrossRef]
  7. K. Newby, M.Sc. Thesis, U. Utah (1984).
  8. S. A. Rockhold, R. D. Quinn, R. A. Van Wagenen, J. D. Andrade, M. Reichert, “Total Internal Reflection Fluorescence (TIRF) as a Quantitative Probe of Protein Adsorption,” J. Electroanal. Chem. 150, 261 (1983).
    [CrossRef]

1983 (1)

S. A. Rockhold, R. D. Quinn, R. A. Van Wagenen, J. D. Andrade, M. Reichert, “Total Internal Reflection Fluorescence (TIRF) as a Quantitative Probe of Protein Adsorption,” J. Electroanal. Chem. 150, 261 (1983).
[CrossRef]

1982 (1)

T. H. Maugh, “Remote Spectrometry with Fiber Optics,” Science 218, 875 (1982).
[CrossRef] [PubMed]

1981 (1)

S. A. Borman, “Optrodes,” Anal. Chem. 53, 1616A (1981).

1979 (2)

Andrade, J. D.

S. A. Rockhold, R. D. Quinn, R. A. Van Wagenen, J. D. Andrade, M. Reichert, “Total Internal Reflection Fluorescence (TIRF) as a Quantitative Probe of Protein Adsorption,” J. Electroanal. Chem. 150, 261 (1983).
[CrossRef]

Benner, R. E.

E.-H. Lee, R. E. Benner, J. B. Fenn, R. K. Chang, “Angular Distribution of Fluorescence from Liquids and Monodispersed Spheres by Evanescent Wave Excitation,” Appl. Opt. 18, 862 (1979).
[CrossRef]

R. E. Benner, R. K. Chang, in Fiber Optics: Advances in Research and Development, B. Bendow, S. S. Mitra, Eds. (Plenum, New York, 1979), p. 625.

Borman, S. A.

S. A. Borman, “Optrodes,” Anal. Chem. 53, 1616A (1981).

Chang, R. K.

E.-H. Lee, R. E. Benner, J. B. Fenn, R. K. Chang, “Angular Distribution of Fluorescence from Liquids and Monodispersed Spheres by Evanescent Wave Excitation,” Appl. Opt. 18, 862 (1979).
[CrossRef]

R. E. Benner, R. K. Chang, in Fiber Optics: Advances in Research and Development, B. Bendow, S. S. Mitra, Eds. (Plenum, New York, 1979), p. 625.

Eckbreth, A. C.

Fenn, J. B.

Haugen, G. R.

T. Hirschfeld, D. C. Johnson, G. R. Haugen, L. W. Hrubesh, Abstracts, 179th National Meeting of the American Chemical Society (American Chemical Society, Washington, D.C., 1980), ANAL-134.

Hirschfeld, T.

T. Hirschfeld, D. C. Johnson, G. R. Haugen, L. W. Hrubesh, Abstracts, 179th National Meeting of the American Chemical Society (American Chemical Society, Washington, D.C., 1980), ANAL-134.

Hrubesh, L. W.

T. Hirschfeld, D. C. Johnson, G. R. Haugen, L. W. Hrubesh, Abstracts, 179th National Meeting of the American Chemical Society (American Chemical Society, Washington, D.C., 1980), ANAL-134.

Johnson, D. C.

T. Hirschfeld, D. C. Johnson, G. R. Haugen, L. W. Hrubesh, Abstracts, 179th National Meeting of the American Chemical Society (American Chemical Society, Washington, D.C., 1980), ANAL-134.

Lee, E.-H.

Maugh, T. H.

T. H. Maugh, “Remote Spectrometry with Fiber Optics,” Science 218, 875 (1982).
[CrossRef] [PubMed]

Newby, K.

K. Newby, M.Sc. Thesis, U. Utah (1984).

Quinn, R. D.

S. A. Rockhold, R. D. Quinn, R. A. Van Wagenen, J. D. Andrade, M. Reichert, “Total Internal Reflection Fluorescence (TIRF) as a Quantitative Probe of Protein Adsorption,” J. Electroanal. Chem. 150, 261 (1983).
[CrossRef]

Reichert, M.

S. A. Rockhold, R. D. Quinn, R. A. Van Wagenen, J. D. Andrade, M. Reichert, “Total Internal Reflection Fluorescence (TIRF) as a Quantitative Probe of Protein Adsorption,” J. Electroanal. Chem. 150, 261 (1983).
[CrossRef]

Rockhold, S. A.

S. A. Rockhold, R. D. Quinn, R. A. Van Wagenen, J. D. Andrade, M. Reichert, “Total Internal Reflection Fluorescence (TIRF) as a Quantitative Probe of Protein Adsorption,” J. Electroanal. Chem. 150, 261 (1983).
[CrossRef]

Van Wagenen, R. A.

S. A. Rockhold, R. D. Quinn, R. A. Van Wagenen, J. D. Andrade, M. Reichert, “Total Internal Reflection Fluorescence (TIRF) as a Quantitative Probe of Protein Adsorption,” J. Electroanal. Chem. 150, 261 (1983).
[CrossRef]

Anal. Chem. (1)

S. A. Borman, “Optrodes,” Anal. Chem. 53, 1616A (1981).

Appl. Opt. (2)

J. Electroanal. Chem. (1)

S. A. Rockhold, R. D. Quinn, R. A. Van Wagenen, J. D. Andrade, M. Reichert, “Total Internal Reflection Fluorescence (TIRF) as a Quantitative Probe of Protein Adsorption,” J. Electroanal. Chem. 150, 261 (1983).
[CrossRef]

Science (1)

T. H. Maugh, “Remote Spectrometry with Fiber Optics,” Science 218, 875 (1982).
[CrossRef] [PubMed]

Other (3)

R. E. Benner, R. K. Chang, in Fiber Optics: Advances in Research and Development, B. Bendow, S. S. Mitra, Eds. (Plenum, New York, 1979), p. 625.

T. Hirschfeld, D. C. Johnson, G. R. Haugen, L. W. Hrubesh, Abstracts, 179th National Meeting of the American Chemical Society (American Chemical Society, Washington, D.C., 1980), ANAL-134.

K. Newby, M.Sc. Thesis, U. Utah (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Remote adsorption sensor configuration: (a) sensor tip design showing the stripped fiber tip and opaque terminating cap; (b) schematic of the excitation and collection system (A, laser; B, excitation light; C, collected spectral emission; D, proximal fiber tip and microscope; E, optical fiber; and F, sensor tip immersed in liquid sample).

Fig. 2
Fig. 2

Fluorescence spectra of rhodamine 6G dye solution at sensor tip immersion depths ranging from 0.0 to 3.0 cm in increments of 0.3 cm. The sharp peaks at 806 and 1037 cm−1 are Raman peaks from the glass core of the fiber. Arrow indicates direction of increasing immersion depth.

Fig. 3
Fig. 3

Data of Fig. 2 at 17,985 cm−1 as a function of sensor tip immersion depth monitored at the peak maximum, 2507 cm−1 away from the laser line.

Fig. 4
Fig. 4

Fluorescence spectra obtained in air after a 20-min exposure of the sensor tip to the rhodamine-labeled protein solution (RITC-IgG) and after a 30-min exposure to the buffer (PBS). The bottom spectrum indicates the Raman background intensity level for the fiber in air.

Fig. 5
Fig. 5

Rhodamine-labeled protein fluorescence intensity at 17,392 cm−1 (3100 cm−1 away from laser line) as a function of the square root of immersion time, beginning with introduction of labeled-protein solution. (A) Background Raman intensity of the fiber in air. (B) Intensity level after equilibration with buffer solution.

Fig. 6
Fig. 6

Raman spectrum from benzene collected with the remote probe superimposed on Raman peaks from the cladding of the fiber.

Metrics