Abstract

This paper describes the theory, development, and experimental application of an instrument designed to measure small relative temperature fluctuations associated with traveling acoustic waves in a combustion plasma by observing potassium line radiation. The instrument has been used successfully to measure relative temperature fluctuations of <0.1% in a combustion plasma under conditions representative of magnetohydrodynamic power generation.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. G. Vincenti, C. H. Kruger, Introduction to Physical Gas Dynamics (Robert E. Krieger, Huntington, N.Y., 1977).
  2. I. A. Vasileva, L. V. Deputatova, A. P. Nefedov, “Investigation of the Far Wings of Resonance Lines of Alkaline Metals in Combustion Products Plasma,” at Second Joint U.S.–U.S.S.R. Colloquium on MHD, Washington, D.C. (June 1975).
  3. R. K. James, “Joule Heating Effects in the Electrode Wall Boundary Layer of MHD Generators,” High Temperature Gasdynamics Laboratory Report 115, Stanford U., Stanford, Calif. (Jan.1980).
  4. J. W. Daily, C. K. Kruger, “Effects of Cold Boundary Layers on Spectroscopic Temperature Measurements in Combustion Gas Flow,” AIAA Paper 76–134 (1976).
  5. M. Mitchner, C. H. Kruger, Partially Ionized Gases (Wiley, New York, 1973).
  6. T. D. Simons, “Acoustic and Entropy Waves in a Combustion MHD Generator,” High Temperature Gasdynamics Lab Report 203, Stanford U., Stanford, Calif.
  7. T. D. Simons, M. Mitchner, R. H. Eustis, “Analysis and Measurement of Property Disturbances in a Combustion MHD Plasma,” submitted for publication to Physics of Fluids.

Daily, J. W.

J. W. Daily, C. K. Kruger, “Effects of Cold Boundary Layers on Spectroscopic Temperature Measurements in Combustion Gas Flow,” AIAA Paper 76–134 (1976).

Deputatova, L. V.

I. A. Vasileva, L. V. Deputatova, A. P. Nefedov, “Investigation of the Far Wings of Resonance Lines of Alkaline Metals in Combustion Products Plasma,” at Second Joint U.S.–U.S.S.R. Colloquium on MHD, Washington, D.C. (June 1975).

Eustis, R. H.

T. D. Simons, M. Mitchner, R. H. Eustis, “Analysis and Measurement of Property Disturbances in a Combustion MHD Plasma,” submitted for publication to Physics of Fluids.

James, R. K.

R. K. James, “Joule Heating Effects in the Electrode Wall Boundary Layer of MHD Generators,” High Temperature Gasdynamics Laboratory Report 115, Stanford U., Stanford, Calif. (Jan.1980).

Kruger, C. H.

W. G. Vincenti, C. H. Kruger, Introduction to Physical Gas Dynamics (Robert E. Krieger, Huntington, N.Y., 1977).

M. Mitchner, C. H. Kruger, Partially Ionized Gases (Wiley, New York, 1973).

Kruger, C. K.

J. W. Daily, C. K. Kruger, “Effects of Cold Boundary Layers on Spectroscopic Temperature Measurements in Combustion Gas Flow,” AIAA Paper 76–134 (1976).

Mitchner, M.

M. Mitchner, C. H. Kruger, Partially Ionized Gases (Wiley, New York, 1973).

T. D. Simons, M. Mitchner, R. H. Eustis, “Analysis and Measurement of Property Disturbances in a Combustion MHD Plasma,” submitted for publication to Physics of Fluids.

Nefedov, A. P.

I. A. Vasileva, L. V. Deputatova, A. P. Nefedov, “Investigation of the Far Wings of Resonance Lines of Alkaline Metals in Combustion Products Plasma,” at Second Joint U.S.–U.S.S.R. Colloquium on MHD, Washington, D.C. (June 1975).

Simons, T. D.

T. D. Simons, “Acoustic and Entropy Waves in a Combustion MHD Generator,” High Temperature Gasdynamics Lab Report 203, Stanford U., Stanford, Calif.

T. D. Simons, M. Mitchner, R. H. Eustis, “Analysis and Measurement of Property Disturbances in a Combustion MHD Plasma,” submitted for publication to Physics of Fluids.

Vasileva, I. A.

I. A. Vasileva, L. V. Deputatova, A. P. Nefedov, “Investigation of the Far Wings of Resonance Lines of Alkaline Metals in Combustion Products Plasma,” at Second Joint U.S.–U.S.S.R. Colloquium on MHD, Washington, D.C. (June 1975).

Vincenti, W. G.

W. G. Vincenti, C. H. Kruger, Introduction to Physical Gas Dynamics (Robert E. Krieger, Huntington, N.Y., 1977).

Other

W. G. Vincenti, C. H. Kruger, Introduction to Physical Gas Dynamics (Robert E. Krieger, Huntington, N.Y., 1977).

I. A. Vasileva, L. V. Deputatova, A. P. Nefedov, “Investigation of the Far Wings of Resonance Lines of Alkaline Metals in Combustion Products Plasma,” at Second Joint U.S.–U.S.S.R. Colloquium on MHD, Washington, D.C. (June 1975).

R. K. James, “Joule Heating Effects in the Electrode Wall Boundary Layer of MHD Generators,” High Temperature Gasdynamics Laboratory Report 115, Stanford U., Stanford, Calif. (Jan.1980).

J. W. Daily, C. K. Kruger, “Effects of Cold Boundary Layers on Spectroscopic Temperature Measurements in Combustion Gas Flow,” AIAA Paper 76–134 (1976).

M. Mitchner, C. H. Kruger, Partially Ionized Gases (Wiley, New York, 1973).

T. D. Simons, “Acoustic and Entropy Waves in a Combustion MHD Generator,” High Temperature Gasdynamics Lab Report 203, Stanford U., Stanford, Calif.

T. D. Simons, M. Mitchner, R. H. Eustis, “Analysis and Measurement of Property Disturbances in a Combustion MHD Plasma,” submitted for publication to Physics of Fluids.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the luminosity probe.

Fig. 2
Fig. 2

Response of luminosity probe to a convected entropy wave.

Fig. 3
Fig. 3

Relative temperature fluctuations measured in the presence of a magnetic field (2.2 T) and mean plasma temperature of 2800 K.

Fig. 4
Fig. 4

Response of luminosity probe to an acoustic wave.

Tables (1)

Tables Icon

Table I Constants of Proportionality a K for Δχ K /χ K = a K ΔT/T in the Range T ≈ 2800 ± 150 K (ϕ = Equivalence Ratio, ϕ > 1 is Fuel Rich)

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

I ν ( l ) = I ν ( T w ) exp [ - τ ν ( l ) ] + 0 l B ν ( T p ) exp [ - τ ν ( x ) d x ] ,
τ ν ( x ) = 0 x α ν ( r ) d r .
B ν ( T ) = 2 h ν 3 / c 2 exp ( h ν / k T ) - 1 , the Planck function ,
V = c filter τ ν F ν d ν ,
I ν = I ν ( T w ) exp [ - τ ν ( l ) ] + B ν ( T p ) { 1 - exp [ - τ ν ( l ) ] } .
V 2 V 1 = B ν ( T 2 ) τ ν 2 F ν d ν B ν ( T 1 ) τ ν 1 F ν d ν ,
τ ( ν ) = τ ν 0 [ 1 + a ( ν - ν 0 ) ] ,
filter τ ν F ν d ν = K τ ν 0 ,
log ( V 2 V 1 ) h ν 0 k T 1 ( 1 - T 1 T 2 ) + log ( τ ν 2 τ ν 1 ) .
log ( V 2 V 1 ) h ν 0 k T 1 ( Δ T T 1 ) + Δ τ ν τ ν 1 .
α ν n K n p g ¯ K p Q ¯ K p ( opt ) ,
Δ α α = 3 2 Δ T T + Δ χ K χ K + 2 Δ P P .
Δ χ K χ K = a K Δ T T + b K Δ P P .
Δ τ ν τ ν ( a K - 3 2 ± 1 2 ) Δ T T 1 ,
log ( V 2 V 1 ) = ( h ν 0 k T 1 + a K - 3 2 ± 1 2 ) Δ T T 1 .
( P 2 P 1 ) ( γ - 1 ) / γ = T 2 T 1 .
log ( V 2 V 1 ) ( h ν 0 k T 1 + 2 γ γ - 1 ) Δ T T 1 ,

Metrics