Abstract

Structural design of multimode graded-index fibers in the long-wavelength region around 1.3 μm is described. Suitable fiber parameters for operating with a laser source for determined: outer diamter 125 μm, core diameter 50 μm, and refractive-index difference 0.015 (relative-index difference ~1%), for transmission systems around 100 Mb/sec. These values agree with the optimum values for short-wavelength transmission systems.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Seikai, M. Tateda, K. Kitayama, N. Uchida, “Optimization of Multimode Graded-Index Fiber Parameters: Design Considerations,” Appl. Opt. 19, 2860 (1980).
    [CrossRef] [PubMed]
  2. M. I. Schwartz, M. J. Buckler, paper presented at International Conference on Communications (ICC, Denver, 1981).
  3. M. Horiguchi, H. Osanai, “Spectral Losses of Low-OH-Content Optical Fibers,” Electron. Lett. 12, 310 (1976).
    [CrossRef]
  4. T. Edahiro, S. Sudo, M. Kawachi, K. Jinguji, N. Inagaki, “Phosphor Doped Silica Cladding VAD Fibers,” Electron. Lett. 15, 726 (1979).
    [CrossRef]
  5. H. Okazaki, Y. Ohmori, “Fabrication of High N. A. Graded-Index Optical Fibers by MCVD Method,” Trans. IECE Jpn. J65-C, 244 (1982).
  6. M. Miyauchi, M. Matsumoto, M. Hirai, “Practical Fiber Splice Techniques for Optical Cables,” Rev. Electr. Commun. Lab. 29, 1150 (1981).
  7. D. Gloge, “Bending Loss in Multimode Fibers with Graded and Ungraded Core Index,” Appl. Opt. 11, 2506 (1972).
    [CrossRef] [PubMed]
  8. E. G. Neumann, W. Weidhaas, “Loss due to Radial Offsets in Dielectric Optical Waveguides with Arbitrary Index Profile,” AEU Arch fuer Elektron. und Uebprtragungstech. Electron. and Commun. 30, 448 (1976).
  9. T. Yamanishi, K. Yoshimura, S. Seikai, N. Uchida, paper presented at ACS/CSJ Chemical Congress Symposium on Polymers for Optical Fiber Systems (1979).
  10. T. Tanifuji, T. Horiguchi, M. Tokuda, T. Matsumoto, K. Hashimoto, “Empirical Formula for Estimating the Baseband Bandwidth of Spliced Optical Fibers,” Trans. IECE Jpn. E63, 39 (1980).
  11. H. Ishio, E. Yoneda, T. Kanada, “Design and Performance of 6.3 Mb/s, 32 Mb/s and 100 Mb/s Digital Transmission Systems Using Optical Fiber Cables,” Rev. Electr. Commun. Lab. 29, 1094 (1981).
  12. See page 13—Author—complete this ref. or delete in text.

1982

H. Okazaki, Y. Ohmori, “Fabrication of High N. A. Graded-Index Optical Fibers by MCVD Method,” Trans. IECE Jpn. J65-C, 244 (1982).

1981

M. Miyauchi, M. Matsumoto, M. Hirai, “Practical Fiber Splice Techniques for Optical Cables,” Rev. Electr. Commun. Lab. 29, 1150 (1981).

H. Ishio, E. Yoneda, T. Kanada, “Design and Performance of 6.3 Mb/s, 32 Mb/s and 100 Mb/s Digital Transmission Systems Using Optical Fiber Cables,” Rev. Electr. Commun. Lab. 29, 1094 (1981).

1980

T. Tanifuji, T. Horiguchi, M. Tokuda, T. Matsumoto, K. Hashimoto, “Empirical Formula for Estimating the Baseband Bandwidth of Spliced Optical Fibers,” Trans. IECE Jpn. E63, 39 (1980).

S. Seikai, M. Tateda, K. Kitayama, N. Uchida, “Optimization of Multimode Graded-Index Fiber Parameters: Design Considerations,” Appl. Opt. 19, 2860 (1980).
[CrossRef] [PubMed]

1979

T. Edahiro, S. Sudo, M. Kawachi, K. Jinguji, N. Inagaki, “Phosphor Doped Silica Cladding VAD Fibers,” Electron. Lett. 15, 726 (1979).
[CrossRef]

1976

M. Horiguchi, H. Osanai, “Spectral Losses of Low-OH-Content Optical Fibers,” Electron. Lett. 12, 310 (1976).
[CrossRef]

E. G. Neumann, W. Weidhaas, “Loss due to Radial Offsets in Dielectric Optical Waveguides with Arbitrary Index Profile,” AEU Arch fuer Elektron. und Uebprtragungstech. Electron. and Commun. 30, 448 (1976).

1972

Buckler, M. J.

M. I. Schwartz, M. J. Buckler, paper presented at International Conference on Communications (ICC, Denver, 1981).

Edahiro, T.

T. Edahiro, S. Sudo, M. Kawachi, K. Jinguji, N. Inagaki, “Phosphor Doped Silica Cladding VAD Fibers,” Electron. Lett. 15, 726 (1979).
[CrossRef]

Gloge, D.

Hashimoto, K.

T. Tanifuji, T. Horiguchi, M. Tokuda, T. Matsumoto, K. Hashimoto, “Empirical Formula for Estimating the Baseband Bandwidth of Spliced Optical Fibers,” Trans. IECE Jpn. E63, 39 (1980).

Hirai, M.

M. Miyauchi, M. Matsumoto, M. Hirai, “Practical Fiber Splice Techniques for Optical Cables,” Rev. Electr. Commun. Lab. 29, 1150 (1981).

Horiguchi, M.

M. Horiguchi, H. Osanai, “Spectral Losses of Low-OH-Content Optical Fibers,” Electron. Lett. 12, 310 (1976).
[CrossRef]

Horiguchi, T.

T. Tanifuji, T. Horiguchi, M. Tokuda, T. Matsumoto, K. Hashimoto, “Empirical Formula for Estimating the Baseband Bandwidth of Spliced Optical Fibers,” Trans. IECE Jpn. E63, 39 (1980).

Inagaki, N.

T. Edahiro, S. Sudo, M. Kawachi, K. Jinguji, N. Inagaki, “Phosphor Doped Silica Cladding VAD Fibers,” Electron. Lett. 15, 726 (1979).
[CrossRef]

Ishio, H.

H. Ishio, E. Yoneda, T. Kanada, “Design and Performance of 6.3 Mb/s, 32 Mb/s and 100 Mb/s Digital Transmission Systems Using Optical Fiber Cables,” Rev. Electr. Commun. Lab. 29, 1094 (1981).

Jinguji, K.

T. Edahiro, S. Sudo, M. Kawachi, K. Jinguji, N. Inagaki, “Phosphor Doped Silica Cladding VAD Fibers,” Electron. Lett. 15, 726 (1979).
[CrossRef]

Kanada, T.

H. Ishio, E. Yoneda, T. Kanada, “Design and Performance of 6.3 Mb/s, 32 Mb/s and 100 Mb/s Digital Transmission Systems Using Optical Fiber Cables,” Rev. Electr. Commun. Lab. 29, 1094 (1981).

Kawachi, M.

T. Edahiro, S. Sudo, M. Kawachi, K. Jinguji, N. Inagaki, “Phosphor Doped Silica Cladding VAD Fibers,” Electron. Lett. 15, 726 (1979).
[CrossRef]

Kitayama, K.

Matsumoto, M.

M. Miyauchi, M. Matsumoto, M. Hirai, “Practical Fiber Splice Techniques for Optical Cables,” Rev. Electr. Commun. Lab. 29, 1150 (1981).

Matsumoto, T.

T. Tanifuji, T. Horiguchi, M. Tokuda, T. Matsumoto, K. Hashimoto, “Empirical Formula for Estimating the Baseband Bandwidth of Spliced Optical Fibers,” Trans. IECE Jpn. E63, 39 (1980).

Miyauchi, M.

M. Miyauchi, M. Matsumoto, M. Hirai, “Practical Fiber Splice Techniques for Optical Cables,” Rev. Electr. Commun. Lab. 29, 1150 (1981).

Neumann, E. G.

E. G. Neumann, W. Weidhaas, “Loss due to Radial Offsets in Dielectric Optical Waveguides with Arbitrary Index Profile,” AEU Arch fuer Elektron. und Uebprtragungstech. Electron. and Commun. 30, 448 (1976).

Ohmori, Y.

H. Okazaki, Y. Ohmori, “Fabrication of High N. A. Graded-Index Optical Fibers by MCVD Method,” Trans. IECE Jpn. J65-C, 244 (1982).

Okazaki, H.

H. Okazaki, Y. Ohmori, “Fabrication of High N. A. Graded-Index Optical Fibers by MCVD Method,” Trans. IECE Jpn. J65-C, 244 (1982).

Osanai, H.

M. Horiguchi, H. Osanai, “Spectral Losses of Low-OH-Content Optical Fibers,” Electron. Lett. 12, 310 (1976).
[CrossRef]

Schwartz, M. I.

M. I. Schwartz, M. J. Buckler, paper presented at International Conference on Communications (ICC, Denver, 1981).

Seikai, S.

S. Seikai, M. Tateda, K. Kitayama, N. Uchida, “Optimization of Multimode Graded-Index Fiber Parameters: Design Considerations,” Appl. Opt. 19, 2860 (1980).
[CrossRef] [PubMed]

T. Yamanishi, K. Yoshimura, S. Seikai, N. Uchida, paper presented at ACS/CSJ Chemical Congress Symposium on Polymers for Optical Fiber Systems (1979).

Sudo, S.

T. Edahiro, S. Sudo, M. Kawachi, K. Jinguji, N. Inagaki, “Phosphor Doped Silica Cladding VAD Fibers,” Electron. Lett. 15, 726 (1979).
[CrossRef]

Tanifuji, T.

T. Tanifuji, T. Horiguchi, M. Tokuda, T. Matsumoto, K. Hashimoto, “Empirical Formula for Estimating the Baseband Bandwidth of Spliced Optical Fibers,” Trans. IECE Jpn. E63, 39 (1980).

Tateda, M.

Tokuda, M.

T. Tanifuji, T. Horiguchi, M. Tokuda, T. Matsumoto, K. Hashimoto, “Empirical Formula for Estimating the Baseband Bandwidth of Spliced Optical Fibers,” Trans. IECE Jpn. E63, 39 (1980).

Uchida, N.

S. Seikai, M. Tateda, K. Kitayama, N. Uchida, “Optimization of Multimode Graded-Index Fiber Parameters: Design Considerations,” Appl. Opt. 19, 2860 (1980).
[CrossRef] [PubMed]

T. Yamanishi, K. Yoshimura, S. Seikai, N. Uchida, paper presented at ACS/CSJ Chemical Congress Symposium on Polymers for Optical Fiber Systems (1979).

Weidhaas, W.

E. G. Neumann, W. Weidhaas, “Loss due to Radial Offsets in Dielectric Optical Waveguides with Arbitrary Index Profile,” AEU Arch fuer Elektron. und Uebprtragungstech. Electron. and Commun. 30, 448 (1976).

Yamanishi, T.

T. Yamanishi, K. Yoshimura, S. Seikai, N. Uchida, paper presented at ACS/CSJ Chemical Congress Symposium on Polymers for Optical Fiber Systems (1979).

Yoneda, E.

H. Ishio, E. Yoneda, T. Kanada, “Design and Performance of 6.3 Mb/s, 32 Mb/s and 100 Mb/s Digital Transmission Systems Using Optical Fiber Cables,” Rev. Electr. Commun. Lab. 29, 1094 (1981).

Yoshimura, K.

T. Yamanishi, K. Yoshimura, S. Seikai, N. Uchida, paper presented at ACS/CSJ Chemical Congress Symposium on Polymers for Optical Fiber Systems (1979).

AEU Arch fuer Elektron. und Uebprtragungstech. Electron. and Commun.

E. G. Neumann, W. Weidhaas, “Loss due to Radial Offsets in Dielectric Optical Waveguides with Arbitrary Index Profile,” AEU Arch fuer Elektron. und Uebprtragungstech. Electron. and Commun. 30, 448 (1976).

Appl. Opt.

Electron. Lett.

M. Horiguchi, H. Osanai, “Spectral Losses of Low-OH-Content Optical Fibers,” Electron. Lett. 12, 310 (1976).
[CrossRef]

T. Edahiro, S. Sudo, M. Kawachi, K. Jinguji, N. Inagaki, “Phosphor Doped Silica Cladding VAD Fibers,” Electron. Lett. 15, 726 (1979).
[CrossRef]

Rev. Electr. Commun. Lab.

M. Miyauchi, M. Matsumoto, M. Hirai, “Practical Fiber Splice Techniques for Optical Cables,” Rev. Electr. Commun. Lab. 29, 1150 (1981).

H. Ishio, E. Yoneda, T. Kanada, “Design and Performance of 6.3 Mb/s, 32 Mb/s and 100 Mb/s Digital Transmission Systems Using Optical Fiber Cables,” Rev. Electr. Commun. Lab. 29, 1094 (1981).

Trans. IECE Jpn.

H. Okazaki, Y. Ohmori, “Fabrication of High N. A. Graded-Index Optical Fibers by MCVD Method,” Trans. IECE Jpn. J65-C, 244 (1982).

T. Tanifuji, T. Horiguchi, M. Tokuda, T. Matsumoto, K. Hashimoto, “Empirical Formula for Estimating the Baseband Bandwidth of Spliced Optical Fibers,” Trans. IECE Jpn. E63, 39 (1980).

Other

M. I. Schwartz, M. J. Buckler, paper presented at International Conference on Communications (ICC, Denver, 1981).

See page 13—Author—complete this ref. or delete in text.

T. Yamanishi, K. Yoshimura, S. Seikai, N. Uchida, paper presented at ACS/CSJ Chemical Congress Symposium on Polymers for Optical Fiber Systems (1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Loss increase from bending for fibers with various values of 2a/Δ. The solid line represents the best-fit line.

Fig. 2
Fig. 2

Measured coupling loss as a function of a2Δ for the LD. The solid lines represent the best-fit lines.

Fig. 3
Fig. 3

Relationship between the bandwidth and Δα for various values of Δ. Δα[= (ααopt)/αopt] is the normalized deviation from the optimum αopt.

Fig. 4
Fig. 4

Relationship between Δ and yield rate of bandwidth. Circles show experimental cumulative probability of bandwidth for mass-produced fibers with Δ = 1.0%. The solid line represents the normal distribution N(0.9,0.3) best-fitted to the circles. Broken lines show the calculated cumulative bandwidth probabilities for various values of Δ using Fig. 3.

Fig. 5
Fig. 5

Schematic representation of a repeater section.

Fig. 6
Fig. 6

(a) Relationship between α T and A(= b/a) for various values of 2b at λ = 1.3 μm. (b) Relationship between α T and Δ for various values of 2b at λ = 1.3 μm.

Fig. 7
Fig. 7

Transmission distance as a function of bit rate for various values of Δ when the bandwidth production yield rates are (a) 90% and (b) 95%.

Fig. 8
Fig. 8

Relationship between the transmission distance and Δ under loss and bandwith limits for the 100-Mb/sec transmission system.

Tables (1)

Tables Icon

Table I Optical Loss as a Function of Fiber Parameters and Representative Loss Values

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

α f = 0.32 + 0.23 Δ ( dB / km ) ,
α b ( a / Δ ) 1.43 ( dB ) .
α s a - 1
α c log ( a 2 Δ ) ( dB ) ,
n ( r ) = { n 1 [ 1 - 2 Δ ( r / a ) α ] 1 / 2 ( 0 r a ) , n 2 [ = n 1 ( 1 - 2 Δ ) 1 / 2 ( r a ) ,
α T = ( α f + α m + α b 1 ) L + ( α s + α b 2 ) [ ( L / l ) + 1 ] + α s m + α c .
B = ( i = 1 N B i - 1 / Γ ) - Γ ,
P ( B i ) = 1 2 π σ 1 exp [ - ( B i - B 1 ) 2 2 σ 1 2 ] .
B 2 = B i - 1 Γ P ( B i ) d B i / P ( B i ) d B i ,
σ 2 = ( B i - 1 / Γ - B 2 ) 2 P ( B i ) d B i / P ( B i ) d B i .
B 3 = N B 2 ,
σ 3 = σ 2 N .
B e = ( B 3 + 3 σ 3 ) - Γ .

Metrics