Abstract

Plastic GRIN rod lenses have been fabricated by photocopolymerization of ternary monomer systems. To select the monomer appropriate to photocopolymerization, we developed a computer program to predict the physical constants of the homopolymer from the chemical structure. Furthermore, according to the model of the gradient-index formation, methyl methacrylate (MMA)–acrylonitrile–vinyl benzoate (VB) monomer system and MMA–benzyl acrylate–VB monomer system were chosen as suitable systems. In both monomer systems, plastic GRIN rods with good lens functions up to the periphery were successfully obtained.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ohtsuka, T. Sugano, Y. Terao, Appl. Opt. 20, 2319 (1981).
    [CrossRef] [PubMed]
  2. Y. Ohtsuka, Y. Terao, J. Appl. Polym. Sci. 26, 2907 (1981).
    [CrossRef]
  3. Y. Ohtsuka, T. Sugano, Appl. Opt. 22, 413 (1983).
    [CrossRef] [PubMed]
  4. Y. Koike, Y. Kimoto, Y. Ohtsuka, Appl. Opt. 21, 1057 (1982).
    [CrossRef] [PubMed]
  5. Y. Koike, Y. Ohtsuka, Appl. Opt. 22, 418 (1983).
    [CrossRef] [PubMed]
  6. I. Kitano, K. Nishizawa, A. Momokita, Appl. Opt. 21, 1017 (1982).
    [CrossRef] [PubMed]
  7. Y. Ohtsuka, Y. Koike, Appl. Opt. 23, 1774 (1984).
    [CrossRef] [PubMed]
  8. Y. Ohtsuka, Kobunshi Ronbunshu (J. Soc. Polym. Sci. Jpn.) 27, 90 (1978).
  9. G. L. Slonimskii et al., Vysokomol. Soedin. Ser. A 12, 494 (1970).
  10. J. Brandrup, E. H. Immergut, Polymer Handbook (Wiley-Interscience, New York, 1975), Chap. 4, p. 339.
  11. A. A. Askadskii et al., Vysokomol. Soedin. Ser. A 13, 1917 (1971).
  12. C. E. Rehberg, Org. Synth. 18, 216 (1946).
  13. T. Alfrey, G. Goldfinger, J. Chem. Phys. 12, 322 (1944).
    [CrossRef]
  14. Y. Ohtsuka, Y. Koike, Sen-i Gakkaishi (J. Soc. Fiber Sci. Technol. Jpn.) 37, 439 (1981), in English.
  15. Y. Ohtsuka, Y. Koike, Appl. Opt. 19, 2866 (1980).
    [CrossRef] [PubMed]
  16. Registered trade name of Carl Zeiss, Jena, East Germany.

1984 (1)

1983 (2)

1982 (2)

1981 (3)

Y. Ohtsuka, Y. Koike, Sen-i Gakkaishi (J. Soc. Fiber Sci. Technol. Jpn.) 37, 439 (1981), in English.

Y. Ohtsuka, Y. Terao, J. Appl. Polym. Sci. 26, 2907 (1981).
[CrossRef]

Y. Ohtsuka, T. Sugano, Y. Terao, Appl. Opt. 20, 2319 (1981).
[CrossRef] [PubMed]

1980 (1)

1978 (1)

Y. Ohtsuka, Kobunshi Ronbunshu (J. Soc. Polym. Sci. Jpn.) 27, 90 (1978).

1971 (1)

A. A. Askadskii et al., Vysokomol. Soedin. Ser. A 13, 1917 (1971).

1970 (1)

G. L. Slonimskii et al., Vysokomol. Soedin. Ser. A 12, 494 (1970).

1946 (1)

C. E. Rehberg, Org. Synth. 18, 216 (1946).

1944 (1)

T. Alfrey, G. Goldfinger, J. Chem. Phys. 12, 322 (1944).
[CrossRef]

Alfrey, T.

T. Alfrey, G. Goldfinger, J. Chem. Phys. 12, 322 (1944).
[CrossRef]

Askadskii, A. A.

A. A. Askadskii et al., Vysokomol. Soedin. Ser. A 13, 1917 (1971).

Brandrup, J.

J. Brandrup, E. H. Immergut, Polymer Handbook (Wiley-Interscience, New York, 1975), Chap. 4, p. 339.

Goldfinger, G.

T. Alfrey, G. Goldfinger, J. Chem. Phys. 12, 322 (1944).
[CrossRef]

Immergut, E. H.

J. Brandrup, E. H. Immergut, Polymer Handbook (Wiley-Interscience, New York, 1975), Chap. 4, p. 339.

Kimoto, Y.

Kitano, I.

Koike, Y.

Momokita, A.

Nishizawa, K.

Ohtsuka, Y.

Rehberg, C. E.

C. E. Rehberg, Org. Synth. 18, 216 (1946).

Slonimskii, G. L.

G. L. Slonimskii et al., Vysokomol. Soedin. Ser. A 12, 494 (1970).

Sugano, T.

Terao, Y.

Y. Ohtsuka, T. Sugano, Y. Terao, Appl. Opt. 20, 2319 (1981).
[CrossRef] [PubMed]

Y. Ohtsuka, Y. Terao, J. Appl. Polym. Sci. 26, 2907 (1981).
[CrossRef]

Appl. Opt. (7)

J. Appl. Polym. Sci. (1)

Y. Ohtsuka, Y. Terao, J. Appl. Polym. Sci. 26, 2907 (1981).
[CrossRef]

J. Chem. Phys. (1)

T. Alfrey, G. Goldfinger, J. Chem. Phys. 12, 322 (1944).
[CrossRef]

Kobunshi Ronbunshu (J. Soc. Polym. Sci. Jpn.) (1)

Y. Ohtsuka, Kobunshi Ronbunshu (J. Soc. Polym. Sci. Jpn.) 27, 90 (1978).

Org. Synth. (1)

C. E. Rehberg, Org. Synth. 18, 216 (1946).

Sen-i Gakkaishi (J. Soc. Fiber Sci. Technol. Jpn.) (1)

Y. Ohtsuka, Y. Koike, Sen-i Gakkaishi (J. Soc. Fiber Sci. Technol. Jpn.) 37, 439 (1981), in English.

Vysokomol. Soedin. Ser. A (2)

A. A. Askadskii et al., Vysokomol. Soedin. Ser. A 13, 1917 (1971).

G. L. Slonimskii et al., Vysokomol. Soedin. Ser. A 12, 494 (1970).

Other (2)

J. Brandrup, E. H. Immergut, Polymer Handbook (Wiley-Interscience, New York, 1975), Chap. 4, p. 339.

Registered trade name of Carl Zeiss, Jena, East Germany.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Layout of the photocopolymerization apparatus: A, gear for rotating glass tube E; B, exhaust pipe; C and D, motor; E, glass tube containing the monomer mixture; F, cylindrical shading; G, UV lamp; H limiting switch; I, silicon photocell for monitoring; J fan.

Fig. 2
Fig. 2

Changes in the remaining monomer composition (tail end of arrow) and composition of the copolymer formed at each monomer composition, with P = 5 wt. % (k = 0,1,2,…) in a MMA–AN–VB system. A double circle expresses the monomer feed composition.

Fig. 3
Fig. 3

Distribution of copolymer composition calculated for MMA–BzA–VB. The composition of the monomers fed in is MMA/BzA/VB = 1/1/1 (wt./wt./wt.).

Fig. 4
Fig. 4

Summary of calculations to ascertain the physical properties of the polymer.

Fig. 5
Fig. 5

Imaging properties of a MMA–AN–VB GRIN rod when MMA/VB = 2.7 (wt./wt.).

Fig. 6
Fig. 6

Imaging properties of a MMA–BzA–VB GRIN rod when (MMA + BzA)/VB = 3.5 (wt./wt.).

Fig. 7
Fig. 7

Representative index distributions of the GRIN rods for the ternary MMA–AN–VB (curve T) and the binary MMA–VB (curve B).

Tables (2)

Tables Icon

Table I Physical Properties of Polymers

Tables Icon

Table II Monomer Reactivity Ratios and Refractive Indices of Homopolymers

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d x 1 : d x 2 : d x 3 = x 1 ( x 1 r 31 r 21 + m 1 m 2 x 2 r 21 r 32 + m 1 m 3 x 3 r 31 r 23 ) ( x 1 + m 1 m 2 x 2 r 12 + m 1 m 3 x 3 r 13 ) : x 2 ( x 1 r 12 r 31 + m 1 m 2 x 2 r 12 r 32 + m 1 m 3 x 3 r 32 r 13 ) ( x 1 r 21 + m 1 m 2 x 2 + m 1 m 3 x 3 r 23 ) : x 3 ( x 1 r 13 r 21 + m 1 m 2 x 2 r 23 r 12 + m 1 m 3 x 3 r 13 r 23 ) ( x 1 r 31 + m 1 m 3 x 3 + m 1 m 2 x 2 r 32 ) ,
x k = x k 0 - 0 P y k d P 1 - P , y k = d x k / ( d x 1 + d x 2 + d x 3 ) ,
d P / ( d y 1 2 + d y 2 2 + d y 3 2 ) 1 / 2 .
n ( r ) = n 0 ( 1 - ½ A r 2 )             r R c ,
n 2 ( r ) = n 0 2 [ 1 - ( g r ) 2 + h 4 ( g r ) 4 + ] ,

Metrics