Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, “Surface Plasma Oscillations and Their Applications,” Phys. Thin Films 9, 145 (1977).
  2. T. Lopez-Rios, G. Vuye, “Use of Surface Plasma Excitation for Determination of Thickness and Optical Constants of Very Thin Surface Layers,” Surf. Sci. 81, 529 (1979).
    [CrossRef]
  3. J. G. Gordon, “Surface Plasmon Spectroscopy for the Optical Characterization of Thin Metal Films and Their Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 276, 96 (1981).
  4. A. Otto, “Excitation of Nonradiative Surface Plasma Wave in Silver by the Method of Frustated Total Reflection,” Z. Phys. 216, 398 (1968).
    [CrossRef]
  5. X. X. Kretschmann, “Die Bestimmung optischer konstanten von metallen durch angerung von oberflachenplasmaschwingungen,” Z. Phys. 241, 313 (1971).
    [CrossRef]
  6. P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  7. J. C. Maxwell-Garnett, “Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. Lond. 203, 385 (1904); “Colours in Metal Glasses in Metallic Films, and in Metallic Solutions,” 205, 237 (1906).
    [CrossRef]
  8. R. P. Volkova, L. S. Palatnik, A. T. Pugachev, “Investigation of Grain-Boundary Diffusion in Two-Layer Au-Ag Films by the Electrical-Resistance Method in situ,” Sov. Phys. Lett. 26, 695 (1981).
  9. R. G. Kirsch, J. M. Poate, M. Eibschutz, “Interdiffusion Mechanisms in Ag-Au Thin Film Couples,” Appl. Phys. Lett. 29, 772 (1976).
    [CrossRef]
  10. D. W. Juenker, “Complex Index of Refraction from Reflectance Data,” J. Opt. Soc. Am. 55, 295 (1965).
    [CrossRef]

1981

J. G. Gordon, “Surface Plasmon Spectroscopy for the Optical Characterization of Thin Metal Films and Their Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 276, 96 (1981).

R. P. Volkova, L. S. Palatnik, A. T. Pugachev, “Investigation of Grain-Boundary Diffusion in Two-Layer Au-Ag Films by the Electrical-Resistance Method in situ,” Sov. Phys. Lett. 26, 695 (1981).

1979

T. Lopez-Rios, G. Vuye, “Use of Surface Plasma Excitation for Determination of Thickness and Optical Constants of Very Thin Surface Layers,” Surf. Sci. 81, 529 (1979).
[CrossRef]

1977

H. Raether, “Surface Plasma Oscillations and Their Applications,” Phys. Thin Films 9, 145 (1977).

1976

R. G. Kirsch, J. M. Poate, M. Eibschutz, “Interdiffusion Mechanisms in Ag-Au Thin Film Couples,” Appl. Phys. Lett. 29, 772 (1976).
[CrossRef]

1972

P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1971

X. X. Kretschmann, “Die Bestimmung optischer konstanten von metallen durch angerung von oberflachenplasmaschwingungen,” Z. Phys. 241, 313 (1971).
[CrossRef]

1968

A. Otto, “Excitation of Nonradiative Surface Plasma Wave in Silver by the Method of Frustated Total Reflection,” Z. Phys. 216, 398 (1968).
[CrossRef]

1965

1904

J. C. Maxwell-Garnett, “Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. Lond. 203, 385 (1904); “Colours in Metal Glasses in Metallic Films, and in Metallic Solutions,” 205, 237 (1906).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Eibschutz, M.

R. G. Kirsch, J. M. Poate, M. Eibschutz, “Interdiffusion Mechanisms in Ag-Au Thin Film Couples,” Appl. Phys. Lett. 29, 772 (1976).
[CrossRef]

Gordon, J. G.

J. G. Gordon, “Surface Plasmon Spectroscopy for the Optical Characterization of Thin Metal Films and Their Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 276, 96 (1981).

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Juenker, D. W.

Kirsch, R. G.

R. G. Kirsch, J. M. Poate, M. Eibschutz, “Interdiffusion Mechanisms in Ag-Au Thin Film Couples,” Appl. Phys. Lett. 29, 772 (1976).
[CrossRef]

Kretschmann, X. X.

X. X. Kretschmann, “Die Bestimmung optischer konstanten von metallen durch angerung von oberflachenplasmaschwingungen,” Z. Phys. 241, 313 (1971).
[CrossRef]

Lopez-Rios, T.

T. Lopez-Rios, G. Vuye, “Use of Surface Plasma Excitation for Determination of Thickness and Optical Constants of Very Thin Surface Layers,” Surf. Sci. 81, 529 (1979).
[CrossRef]

Maxwell-Garnett, J. C.

J. C. Maxwell-Garnett, “Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. Lond. 203, 385 (1904); “Colours in Metal Glasses in Metallic Films, and in Metallic Solutions,” 205, 237 (1906).
[CrossRef]

Otto, A.

A. Otto, “Excitation of Nonradiative Surface Plasma Wave in Silver by the Method of Frustated Total Reflection,” Z. Phys. 216, 398 (1968).
[CrossRef]

Palatnik, L. S.

R. P. Volkova, L. S. Palatnik, A. T. Pugachev, “Investigation of Grain-Boundary Diffusion in Two-Layer Au-Ag Films by the Electrical-Resistance Method in situ,” Sov. Phys. Lett. 26, 695 (1981).

Poate, J. M.

R. G. Kirsch, J. M. Poate, M. Eibschutz, “Interdiffusion Mechanisms in Ag-Au Thin Film Couples,” Appl. Phys. Lett. 29, 772 (1976).
[CrossRef]

Pugachev, A. T.

R. P. Volkova, L. S. Palatnik, A. T. Pugachev, “Investigation of Grain-Boundary Diffusion in Two-Layer Au-Ag Films by the Electrical-Resistance Method in situ,” Sov. Phys. Lett. 26, 695 (1981).

Raether, H.

H. Raether, “Surface Plasma Oscillations and Their Applications,” Phys. Thin Films 9, 145 (1977).

Volkova, R. P.

R. P. Volkova, L. S. Palatnik, A. T. Pugachev, “Investigation of Grain-Boundary Diffusion in Two-Layer Au-Ag Films by the Electrical-Resistance Method in situ,” Sov. Phys. Lett. 26, 695 (1981).

Vuye, G.

T. Lopez-Rios, G. Vuye, “Use of Surface Plasma Excitation for Determination of Thickness and Optical Constants of Very Thin Surface Layers,” Surf. Sci. 81, 529 (1979).
[CrossRef]

Appl. Phys. Lett.

R. G. Kirsch, J. M. Poate, M. Eibschutz, “Interdiffusion Mechanisms in Ag-Au Thin Film Couples,” Appl. Phys. Lett. 29, 772 (1976).
[CrossRef]

J. Opt. Soc. Am.

Philos. Trans. R. Soc. Lond.

J. C. Maxwell-Garnett, “Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. Lond. 203, 385 (1904); “Colours in Metal Glasses in Metallic Films, and in Metallic Solutions,” 205, 237 (1906).
[CrossRef]

Phys. Rev. B

P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Thin Films

H. Raether, “Surface Plasma Oscillations and Their Applications,” Phys. Thin Films 9, 145 (1977).

Proc. Soc. Photo-Opt. Instrum. Eng.

J. G. Gordon, “Surface Plasmon Spectroscopy for the Optical Characterization of Thin Metal Films and Their Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 276, 96 (1981).

Sov. Phys. Lett.

R. P. Volkova, L. S. Palatnik, A. T. Pugachev, “Investigation of Grain-Boundary Diffusion in Two-Layer Au-Ag Films by the Electrical-Resistance Method in situ,” Sov. Phys. Lett. 26, 695 (1981).

Surf. Sci.

T. Lopez-Rios, G. Vuye, “Use of Surface Plasma Excitation for Determination of Thickness and Optical Constants of Very Thin Surface Layers,” Surf. Sci. 81, 529 (1979).
[CrossRef]

Z. Phys.

A. Otto, “Excitation of Nonradiative Surface Plasma Wave in Silver by the Method of Frustated Total Reflection,” Z. Phys. 216, 398 (1968).
[CrossRef]

X. X. Kretschmann, “Die Bestimmung optischer konstanten von metallen durch angerung von oberflachenplasmaschwingungen,” Z. Phys. 241, 313 (1971).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dispersion relation of a 2.0-nm thick gold film deposited on silver, 52.5 nm thick: —, experimental; ◇, granular 2.0-nm thick gold layer calculated with a filling factor of 0.4; +, granular 2.0-nm thick (Au + Ag) layer and a filling factor of 0.35.

Fig. 2
Fig. 2

Same as Fig. 1 for a 3.0-nm thick gold film and using the same filling factors.

Fig. 3
Fig. 3

Same as Fig. 1 for a 4.0-nm thick gold film: —, experimental; ◇, Ag/Au, continuous layers; +, Ag/(Au + Ag)/Au, continuous layers with respective thicknesses of 50.5, 3.0, and 3.0 nm.

Fig. 4
Fig. 4

Dielectric constant of a composite Ag/Au system and dielectric constant of pure gold and pure silver as given by Ref. 6: curves 4,1, real and imaginary parts of pure gold, respectively; curves 6,3, real and imaginary parts of pure silver; curves 5,2, real and imaginary parts of the Ag/Au system.

Metrics