Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Erf, in Laser Applications Vol. 4 (Academic, New York, 1980), p. 1.
  2. W. Lauterborn, A. Vogel, in Annual Review of Fluid Mechanics, Vol. 16 (Annual Reviews, Palo Alto, Calif., 1984), p. 223.
    [CrossRef]
  3. J. W. Goodman, in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, Berlin, 1975).
  4. R. J. Adrian, C.-S. Yao, in Proceedings, Eighth Biennial Symposium on Turbulence, 26–28 Sept. 1983, Rolla, Mo. (U. Missouri, Rolla, 1984).
  5. K. T. Whitby, “The Physical Characteristics of Sulphur Aerosols” Atmos. Environ. 12, 135 (1978).
    [CrossRef]
  6. P. G. Simpkins, T. D. Dudderar, “Laser Speckle Measurement of Transient Benard Convection,” J. Fluid Mech. 89, 665 (1978).
    [CrossRef]
  7. G. Cloud, R. Falco, R. Radke, J. Peiffer, “Noncoherent-Light Speckle Photography for Measurements of Fluid Velocity Fields,” Proc. Soc. Photo-Opt. Instrum. Eng. 243, 150 (1980).
  8. R. J. Adrian, in Fluid Mechanics Measurements (Hemisphere, Washington, D.C., 1983), Chap. 5.
  9. R. Meynart, “Speckle Velocimetry Study of Vortex Pairing in a Low-Re Unexcited Jet,” Phys. Fluids 26, 2074 (1983).
    [CrossRef]
  10. R. Meynart, “Digital Image Processing for Speckle Flow Velocimetry,” Rev. Sci. Instrum. 53, 110 (1982).
    [CrossRef]

1983 (1)

R. Meynart, “Speckle Velocimetry Study of Vortex Pairing in a Low-Re Unexcited Jet,” Phys. Fluids 26, 2074 (1983).
[CrossRef]

1982 (1)

R. Meynart, “Digital Image Processing for Speckle Flow Velocimetry,” Rev. Sci. Instrum. 53, 110 (1982).
[CrossRef]

1980 (1)

G. Cloud, R. Falco, R. Radke, J. Peiffer, “Noncoherent-Light Speckle Photography for Measurements of Fluid Velocity Fields,” Proc. Soc. Photo-Opt. Instrum. Eng. 243, 150 (1980).

1978 (2)

K. T. Whitby, “The Physical Characteristics of Sulphur Aerosols” Atmos. Environ. 12, 135 (1978).
[CrossRef]

P. G. Simpkins, T. D. Dudderar, “Laser Speckle Measurement of Transient Benard Convection,” J. Fluid Mech. 89, 665 (1978).
[CrossRef]

Adrian, R. J.

R. J. Adrian, C.-S. Yao, in Proceedings, Eighth Biennial Symposium on Turbulence, 26–28 Sept. 1983, Rolla, Mo. (U. Missouri, Rolla, 1984).

R. J. Adrian, in Fluid Mechanics Measurements (Hemisphere, Washington, D.C., 1983), Chap. 5.

Cloud, G.

G. Cloud, R. Falco, R. Radke, J. Peiffer, “Noncoherent-Light Speckle Photography for Measurements of Fluid Velocity Fields,” Proc. Soc. Photo-Opt. Instrum. Eng. 243, 150 (1980).

Dudderar, T. D.

P. G. Simpkins, T. D. Dudderar, “Laser Speckle Measurement of Transient Benard Convection,” J. Fluid Mech. 89, 665 (1978).
[CrossRef]

Erf, R. K.

R. K. Erf, in Laser Applications Vol. 4 (Academic, New York, 1980), p. 1.

Falco, R.

G. Cloud, R. Falco, R. Radke, J. Peiffer, “Noncoherent-Light Speckle Photography for Measurements of Fluid Velocity Fields,” Proc. Soc. Photo-Opt. Instrum. Eng. 243, 150 (1980).

Goodman, J. W.

J. W. Goodman, in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, Berlin, 1975).

Lauterborn, W.

W. Lauterborn, A. Vogel, in Annual Review of Fluid Mechanics, Vol. 16 (Annual Reviews, Palo Alto, Calif., 1984), p. 223.
[CrossRef]

Meynart, R.

R. Meynart, “Speckle Velocimetry Study of Vortex Pairing in a Low-Re Unexcited Jet,” Phys. Fluids 26, 2074 (1983).
[CrossRef]

R. Meynart, “Digital Image Processing for Speckle Flow Velocimetry,” Rev. Sci. Instrum. 53, 110 (1982).
[CrossRef]

Peiffer, J.

G. Cloud, R. Falco, R. Radke, J. Peiffer, “Noncoherent-Light Speckle Photography for Measurements of Fluid Velocity Fields,” Proc. Soc. Photo-Opt. Instrum. Eng. 243, 150 (1980).

Radke, R.

G. Cloud, R. Falco, R. Radke, J. Peiffer, “Noncoherent-Light Speckle Photography for Measurements of Fluid Velocity Fields,” Proc. Soc. Photo-Opt. Instrum. Eng. 243, 150 (1980).

Simpkins, P. G.

P. G. Simpkins, T. D. Dudderar, “Laser Speckle Measurement of Transient Benard Convection,” J. Fluid Mech. 89, 665 (1978).
[CrossRef]

Vogel, A.

W. Lauterborn, A. Vogel, in Annual Review of Fluid Mechanics, Vol. 16 (Annual Reviews, Palo Alto, Calif., 1984), p. 223.
[CrossRef]

Whitby, K. T.

K. T. Whitby, “The Physical Characteristics of Sulphur Aerosols” Atmos. Environ. 12, 135 (1978).
[CrossRef]

Yao, C.-S.

R. J. Adrian, C.-S. Yao, in Proceedings, Eighth Biennial Symposium on Turbulence, 26–28 Sept. 1983, Rolla, Mo. (U. Missouri, Rolla, 1984).

Atmos. Environ. (1)

K. T. Whitby, “The Physical Characteristics of Sulphur Aerosols” Atmos. Environ. 12, 135 (1978).
[CrossRef]

J. Fluid Mech. (1)

P. G. Simpkins, T. D. Dudderar, “Laser Speckle Measurement of Transient Benard Convection,” J. Fluid Mech. 89, 665 (1978).
[CrossRef]

Phys. Fluids (1)

R. Meynart, “Speckle Velocimetry Study of Vortex Pairing in a Low-Re Unexcited Jet,” Phys. Fluids 26, 2074 (1983).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

G. Cloud, R. Falco, R. Radke, J. Peiffer, “Noncoherent-Light Speckle Photography for Measurements of Fluid Velocity Fields,” Proc. Soc. Photo-Opt. Instrum. Eng. 243, 150 (1980).

Rev. Sci. Instrum. (1)

R. Meynart, “Digital Image Processing for Speckle Flow Velocimetry,” Rev. Sci. Instrum. 53, 110 (1982).
[CrossRef]

Other (5)

R. J. Adrian, in Fluid Mechanics Measurements (Hemisphere, Washington, D.C., 1983), Chap. 5.

R. K. Erf, in Laser Applications Vol. 4 (Academic, New York, 1980), p. 1.

W. Lauterborn, A. Vogel, in Annual Review of Fluid Mechanics, Vol. 16 (Annual Reviews, Palo Alto, Calif., 1984), p. 223.
[CrossRef]

J. W. Goodman, in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, Berlin, 1975).

R. J. Adrian, C.-S. Yao, in Proceedings, Eighth Biennial Symposium on Turbulence, 26–28 Sept. 1983, Rolla, Mo. (U. Missouri, Rolla, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (1)

Tables Icon

Table I Typical Source Density Values

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S . D . = C Δ z d e 2 / M 2 ,
d e ( M 2 d p 2 + d s 2 ) 1 / 2 ,
d s = 2.44 ( 1 + M ) f / No . λ

Metrics