Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Chylek, “Partial-Wave Resonances and the Ripple Structure in the Mie Normalized Extinction Cross Section,” J. Opt. Soc. Am. 66, 285 (1976).
    [CrossRef]
  2. R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475 (1980).
    [CrossRef]
  3. P. W. Barber, J. F. Owen, R. K. Chang, “Resonant Scattering for Characterization of Axisymmetric Dielectric Objects,” IEEE Trans. Antennas Propag. AP-30, 168 (1982).
    [CrossRef]
  4. J. F. Owen, P. W. Barber, B. J. Messinger, R. K. Chang, “Determination of Optical-Fiber Diameter from Resonances in the Elastic Scattering Spectrum,” Opt. Lett. 6, 272 (1981).
    [CrossRef] [PubMed]
  5. P. Chylek, V. Ramaswamy, A. Ashkin, J. M. Dziedzic, “Simultaneous Determination of Refractive Index and Size of Spherical Dielectric Particles from Light Scattering Data,” Appl. Opt. 22, 2302 (1983).
    [CrossRef] [PubMed]
  6. P. Conwell, C. K. Rushforth, R. E. Benner, S. C. Hill, “An Efficient Automated Algorithm for the Sizing of Dielectric Microspheres Using the Resonance Spectrum,” J. Opt. Soc. Am.00, 000 (198x), submitted.
  7. M. Delhaye, P. Dhamelincourt, F. Wallert, “Analysis of Particulates by Raman Microprobe,” Toxicol. Environ. Chem. Rev. 3, 73 (1979).
    [CrossRef]
  8. M. E. Andersen, R. Z. Muggli, “Microscopical Techniques with the Molecular Optics Laser Examiner Raman Microprobe,” Anal. Chem. 53, 1772 (1981).
    [CrossRef]
  9. J. F. Owen, P. W. Barber, R. K. Chang, “Morphology Dependent Raman Spectra from Microparticles,” in Microbeam Analysis 1982, K. F. J. Heinrich, Ed. (.San Francisco Press, 1982), p. 255.
  10. R. Thurn, W. Kiefer, “Raman-Microsampling Technique Applying Optical Levitation by Radiation Pressure,” Appl. Spectrosc. 38, 78 (1984).
    [CrossRef]
  11. A. Otto, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” Z. Phys. 216, 398 (1968).
    [CrossRef]
  12. P. R. Conwell, P. W. Barber, C. K. Rushforth, “Resonant Spectra of Dielectric Spheres,” J. Opt. Soc. Am. A 1, 62 (1984).
    [CrossRef]
  13. J. F. Owen, R. K. Chang, P. W. Barber, “Internal Electric Field Distributions of a Dielectric Cylinder at Resonance Wavelengths,” Opt. Lett. 6, 540 (1981).
    [CrossRef] [PubMed]
  14. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), p. 123.

1984

1983

1982

P. W. Barber, J. F. Owen, R. K. Chang, “Resonant Scattering for Characterization of Axisymmetric Dielectric Objects,” IEEE Trans. Antennas Propag. AP-30, 168 (1982).
[CrossRef]

1981

1980

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

1979

M. Delhaye, P. Dhamelincourt, F. Wallert, “Analysis of Particulates by Raman Microprobe,” Toxicol. Environ. Chem. Rev. 3, 73 (1979).
[CrossRef]

1976

1968

A. Otto, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” Z. Phys. 216, 398 (1968).
[CrossRef]

Andersen, M. E.

M. E. Andersen, R. Z. Muggli, “Microscopical Techniques with the Molecular Optics Laser Examiner Raman Microprobe,” Anal. Chem. 53, 1772 (1981).
[CrossRef]

Ashkin, A.

Barber, P. W.

P. R. Conwell, P. W. Barber, C. K. Rushforth, “Resonant Spectra of Dielectric Spheres,” J. Opt. Soc. Am. A 1, 62 (1984).
[CrossRef]

P. W. Barber, J. F. Owen, R. K. Chang, “Resonant Scattering for Characterization of Axisymmetric Dielectric Objects,” IEEE Trans. Antennas Propag. AP-30, 168 (1982).
[CrossRef]

J. F. Owen, P. W. Barber, B. J. Messinger, R. K. Chang, “Determination of Optical-Fiber Diameter from Resonances in the Elastic Scattering Spectrum,” Opt. Lett. 6, 272 (1981).
[CrossRef] [PubMed]

J. F. Owen, R. K. Chang, P. W. Barber, “Internal Electric Field Distributions of a Dielectric Cylinder at Resonance Wavelengths,” Opt. Lett. 6, 540 (1981).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

J. F. Owen, P. W. Barber, R. K. Chang, “Morphology Dependent Raman Spectra from Microparticles,” in Microbeam Analysis 1982, K. F. J. Heinrich, Ed. (.San Francisco Press, 1982), p. 255.

Benner, R. E.

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

P. Conwell, C. K. Rushforth, R. E. Benner, S. C. Hill, “An Efficient Automated Algorithm for the Sizing of Dielectric Microspheres Using the Resonance Spectrum,” J. Opt. Soc. Am.00, 000 (198x), submitted.

Chang, R. K.

P. W. Barber, J. F. Owen, R. K. Chang, “Resonant Scattering for Characterization of Axisymmetric Dielectric Objects,” IEEE Trans. Antennas Propag. AP-30, 168 (1982).
[CrossRef]

J. F. Owen, P. W. Barber, B. J. Messinger, R. K. Chang, “Determination of Optical-Fiber Diameter from Resonances in the Elastic Scattering Spectrum,” Opt. Lett. 6, 272 (1981).
[CrossRef] [PubMed]

J. F. Owen, R. K. Chang, P. W. Barber, “Internal Electric Field Distributions of a Dielectric Cylinder at Resonance Wavelengths,” Opt. Lett. 6, 540 (1981).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

J. F. Owen, P. W. Barber, R. K. Chang, “Morphology Dependent Raman Spectra from Microparticles,” in Microbeam Analysis 1982, K. F. J. Heinrich, Ed. (.San Francisco Press, 1982), p. 255.

Chylek, P.

Conwell, P.

P. Conwell, C. K. Rushforth, R. E. Benner, S. C. Hill, “An Efficient Automated Algorithm for the Sizing of Dielectric Microspheres Using the Resonance Spectrum,” J. Opt. Soc. Am.00, 000 (198x), submitted.

Conwell, P. R.

Delhaye, M.

M. Delhaye, P. Dhamelincourt, F. Wallert, “Analysis of Particulates by Raman Microprobe,” Toxicol. Environ. Chem. Rev. 3, 73 (1979).
[CrossRef]

Dhamelincourt, P.

M. Delhaye, P. Dhamelincourt, F. Wallert, “Analysis of Particulates by Raman Microprobe,” Toxicol. Environ. Chem. Rev. 3, 73 (1979).
[CrossRef]

Dziedzic, J. M.

Hill, S. C.

P. Conwell, C. K. Rushforth, R. E. Benner, S. C. Hill, “An Efficient Automated Algorithm for the Sizing of Dielectric Microspheres Using the Resonance Spectrum,” J. Opt. Soc. Am.00, 000 (198x), submitted.

Kiefer, W.

Messinger, B. J.

Muggli, R. Z.

M. E. Andersen, R. Z. Muggli, “Microscopical Techniques with the Molecular Optics Laser Examiner Raman Microprobe,” Anal. Chem. 53, 1772 (1981).
[CrossRef]

Otto, A.

A. Otto, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” Z. Phys. 216, 398 (1968).
[CrossRef]

Owen, J. F.

P. W. Barber, J. F. Owen, R. K. Chang, “Resonant Scattering for Characterization of Axisymmetric Dielectric Objects,” IEEE Trans. Antennas Propag. AP-30, 168 (1982).
[CrossRef]

J. F. Owen, P. W. Barber, B. J. Messinger, R. K. Chang, “Determination of Optical-Fiber Diameter from Resonances in the Elastic Scattering Spectrum,” Opt. Lett. 6, 272 (1981).
[CrossRef] [PubMed]

J. F. Owen, R. K. Chang, P. W. Barber, “Internal Electric Field Distributions of a Dielectric Cylinder at Resonance Wavelengths,” Opt. Lett. 6, 540 (1981).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

J. F. Owen, P. W. Barber, R. K. Chang, “Morphology Dependent Raman Spectra from Microparticles,” in Microbeam Analysis 1982, K. F. J. Heinrich, Ed. (.San Francisco Press, 1982), p. 255.

Ramaswamy, V.

Rushforth, C. K.

P. R. Conwell, P. W. Barber, C. K. Rushforth, “Resonant Spectra of Dielectric Spheres,” J. Opt. Soc. Am. A 1, 62 (1984).
[CrossRef]

P. Conwell, C. K. Rushforth, R. E. Benner, S. C. Hill, “An Efficient Automated Algorithm for the Sizing of Dielectric Microspheres Using the Resonance Spectrum,” J. Opt. Soc. Am.00, 000 (198x), submitted.

Thurn, R.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), p. 123.

Wallert, F.

M. Delhaye, P. Dhamelincourt, F. Wallert, “Analysis of Particulates by Raman Microprobe,” Toxicol. Environ. Chem. Rev. 3, 73 (1979).
[CrossRef]

Anal. Chem.

M. E. Andersen, R. Z. Muggli, “Microscopical Techniques with the Molecular Optics Laser Examiner Raman Microprobe,” Anal. Chem. 53, 1772 (1981).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

IEEE Trans. Antennas Propag.

P. W. Barber, J. F. Owen, R. K. Chang, “Resonant Scattering for Characterization of Axisymmetric Dielectric Objects,” IEEE Trans. Antennas Propag. AP-30, 168 (1982).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Lett.

Phys. Rev. Lett.

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

Toxicol. Environ. Chem. Rev.

M. Delhaye, P. Dhamelincourt, F. Wallert, “Analysis of Particulates by Raman Microprobe,” Toxicol. Environ. Chem. Rev. 3, 73 (1979).
[CrossRef]

Z. Phys.

A. Otto, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” Z. Phys. 216, 398 (1968).
[CrossRef]

Other

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), p. 123.

P. Conwell, C. K. Rushforth, R. E. Benner, S. C. Hill, “An Efficient Automated Algorithm for the Sizing of Dielectric Microspheres Using the Resonance Spectrum,” J. Opt. Soc. Am.00, 000 (198x), submitted.

J. F. Owen, P. W. Barber, R. K. Chang, “Morphology Dependent Raman Spectra from Microparticles,” in Microbeam Analysis 1982, K. F. J. Heinrich, Ed. (.San Francisco Press, 1982), p. 255.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Resonance spectra of polystyrene spheres in water: (a) calculated elastic scattering efficiency for a 9.4030-μm diam sphere; (b) measured fluorescence spectrum of a 9.403-μm sphere resting in water on the surface of a glass plate; (c) measured fluorescence spectrum of a sphere resting in water on a silver surface; (d) measured fluorescence from a sphere floating in water; and (e) measured fluorescence from a sphere suspended in 1% agarose. All measured spectra were obtained with the optical multichannel analyzer.

Fig. 2
Fig. 2

Measured fluorescence from a polystyrene sphere suspended in 1% agarose. The nominal diameter of the sphere is 9.44 μm. The spectrum was measured with the dual monochromator and photomultiplier.

Fig. 3
Fig. 3

Calculated elastic scattering efficiency as a function of size parameter for two values of refractive index: (a) m = 1.195, (b) m = 1.595.

Fig. 4
Fig. 4

(a) Measured fluorescence spectrum of a 4.197-μm diam polystyrene sphere resting on a dry glass surface. The spectrum was analyzed with the dual monochromator and photomultiplier tube. (b) Computed elastic scattering efficiency of a 4.197-μm diam polystyrene sphere. The notation for the an and bn coefficients is that of van de Hulst.14

Metrics