Abstract

An ionization probe and measurement procedures are developed to permit accurate NO density measurements with good spatial and temporal resolution and with the high sensitivity and good discrimination inherent in resonance-enhanced multiple-photon ionization processes. The use of NO as a calibration standard for density measurements of other molecules and combustion radicals is discussed.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. G. Mallard, J. H. Miller, K. C. Smyth, J. Chem. Phys. 76, 3483 (1982).
    [CrossRef]
  2. B. H. Rockney, T. A. Cool, E. R. Grant, Chem. Phys. Lett. 87, 141 (1982).
    [CrossRef]
  3. K. C. Smyth, W. G. Mallard, J. Chem. Phys. 77, 1779 (1982).
    [CrossRef]
  4. J. E. M. Goldsmith, Opt. Lett. 7, 437 (1982).
    [CrossRef] [PubMed]
  5. J. E. M. Goldsmith, J. Chem. Phys. 78, 1610 (1983).
    [CrossRef]
  6. P. J. H. Tjossem, T. A. Cool, Chem. Phys. Lett. 100, 479 (1983).
    [CrossRef]
  7. G. S. Hurst, M. G. Payne, J. D. Kramer, J. P. Young, Rev. Mod. Phys. 51, 767 (1979), and references therein.
    [CrossRef]
  8. G. C. Bjorklund, C. P. Ausschnitt, R. R. Freeman, R. H. Storz, Appl. Phys. Lett. 33, 54 (1978).
    [CrossRef]
  9. M. G. Payne, C. H. Chen, G. S. Hurst, G. W. Foltz, Adv. At. Mol. Phys. 17, 229 (1981), and references therein.
    [CrossRef]
  10. D. M. Lubman, M. N. Kronick, Anal. Chem. 54, 660 (1982).
    [CrossRef]
  11. D. A. Lichtin, L. Zandee, R. B. Bernstein in Lasers in Chemical Analysis, G. Hieftje, J. Travis, F. Lytle, Eds. (Humana, Clifton, N.J.1981), Chap. 6.
  12. For a review of work through mid-1981, see P. M. Johnson, C. E. Otis, Ann. Rev. Phys. Chem. 32, 139 (1981).
    [CrossRef]
  13. The extensive volume of recent work makes it impractical to cite more than a few representative papers. Interesting examples are W. Y. Cheung, W. A. Chupka, S. D. Colson, D. Gaugacq, P. Avouris, J. J. Wynne, J. Chem. Phys. 78, 3625 (1983); D. W. Squire, M. B. Barbalas, R. B. Bernstein, J. Phys. Chem. 87, 1701 (1983); E. F. Marinero, R. Vasudev, R. N. Zare, J. Chem. Phys. 78, 692 (1983); A. J. Grimley, B. D. Kay, Chem. Phys. Lett. 98, 359 (1983); R. L. Whetten, K.-S. Fu, E. R. Grant, J. Chem. Phys. 79, 2626 (1983); R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983).
    [CrossRef]
  14. E. R. Sirkin, Y. Haas, Appl. Phys. 25, 253 (1981).
    [CrossRef]
  15. “Experimental Diagnostics in Gas Phase Combustion Systems,” in Progress in Astronautics and Aeronautics, Vol. 53, B. J. Zinn, Ed. (American Institute of Aeronautics and Astronautics, New York, 1977).
  16. M. Lapp, C. M. Penney, Eds. Laser Raman Gas Diagnostics (Plenum, New York, 1974).
  17. D. R. Crosley, Ed. Laser Probes for Combustion Diagnostics, American Chemical Society Symposium Series No. 134 (American Chemical Society, Washington, D.C., 1980).
    [CrossRef]
  18. Several review papers on laser-based diagnostics appear in Opt. Eng. 20, 493 (1981).
  19. D. Klick, K. A. Marko, L. Rimai, Appl. Opt. 20, 1178 (1981).
    [CrossRef] [PubMed]
  20. M. Pealat, J. P. Taran, F. Moya, Opt. Laser Technol. 12, 21 (1980).
    [CrossRef]
  21. A. C. Eckbreth, Combust. Flame 39, 133 (1980).
    [CrossRef]
  22. I. A. Stenhouse, D. R. Williams, J. B. Cole, M. D. Swards, Appl. Opt. 18, 3819 (1979).
    [PubMed]
  23. J. W. Daily, Appl. Opt. 17, 225 (1978), and references therein.
    [CrossRef] [PubMed]
  24. R. P. Lucht, N. M. Laurendeau, Appl. Opt. 18, 856 (1979).
    [CrossRef] [PubMed]
  25. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, Combust. Flame 50, 189 (1983).
    [CrossRef]
  26. M. J. Dyer, D. R. Crosley, Opt. Lett. 7, 382 (1982).
    [CrossRef] [PubMed]
  27. G. Kychakoff, R. D. Howe, R. K. Hanson, J. D. McDaniel, Appl. Opt. 21, 3225 (1982).
    [CrossRef] [PubMed]
  28. W. K. Bischel, B. E. Perry, D. R. Crosley, Chem. Phys. Lett. 82, 85 (1981).
    [CrossRef]
  29. D. R. Crosley, G. P. Smith, Appl. Opt. 19, 517 (1980).
    [CrossRef] [PubMed]
  30. R. J. Cattolica, Appl. Opt. 20, 1156 (1981).
    [CrossRef] [PubMed]
  31. J. M. Schoenung, R. K. Hanson, Combust. Sci. Tech. 24, 227 (1981).
    [CrossRef]
  32. P. L. Varghese, R. K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 29, 205 (1983).
    [CrossRef]
  33. R. K. Hanson, P. A. Kuntz, C. H. Kruger, Appl. Opt. 16, 2045 (1977).
    [CrossRef] [PubMed]
  34. G. C. Bjorklund, R. R. Freeman, R. H. Storz, Opt. Commun. 31, 47 (1979).
    [CrossRef]
  35. R. J. S. Morrison, E. R. Grant, J. Chem. Phys. 75, 49 (1981).
    [CrossRef]
  36. D. H. Wilkinson, Ionization Chambers and Counters (Cambridge U. P., London, 1950).
  37. B. B. Rossi, H. H. Staub, Ionization Chambers and Counters (McGraw-Hill, New York, 1949).
  38. S. C. Curran, J. O. Craggs, Counting Tubes (Academic, New York, 1949).
  39. Ref. 37, Chap. 3.
  40. W. G. Mallard, K. C. Smyth, Combust. Flame 44, 61 (1982).
    [CrossRef]
  41. For NO/Ar mixtures, a strong tendency for avalanche ionization exists at high pressures (700 Torr), which substantially reduces the range of plateau voltages compared with the NO/N2 mixture case.
  42. D. Zakheim, P. Johnson, J. Chem. Phys. 68, 3644 (1978).
    [CrossRef]
  43. W. M. Jackson, C. S. Lin, Int. J. Chem. Kinet. 10, 945 (1978).
    [CrossRef]
  44. L. Zandee, R. B. Bernstein, J. Chem. Phys. 71, 1359 (1979).
    [CrossRef]
  45. H. Zacharias, R. Schmiedl, K. H. Welge, Appl. Phys. 21, 127 (1980).
    [CrossRef]
  46. J. S. Hayden, G. J. Diebold, J. Chem. Phys. 77, 4767 (1982).
    [CrossRef]
  47. The values of the predissociation rate and spontaneous emission rate from the C2Π v = 0 state have been the subject of much discussion in the literature. The values given here are consistent with recent work reported in: J. Brzozowski, P. Erman, M. Lyyra, Phys. Scr. 14, 290 (1976); S. Yagi, T. Hikida, Y. More, Chem. Phys. Lett. 56, 113 (1978); O. Benoist d’Azy, R. Lopez-Delgado, A. Tramer, Chem. Phys. 9, 327 (1975). Previous work [A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970)] based on older C2Π radiative lifetime data gave a larger predissociation rate (1.6 × 109 sec−1).
    [CrossRef]
  48. The cross section for photoionization of the C2Π v = 0 state at 381.9 nm (σ = 4 × 10−18 cm2) was calculated with the quantum defect method of Burgess and Seaton [A. Burgess, M. J. Seaton, Mon. Not. R. Astron. Soc. 120, 121 (1960)] with quantum defect data given by Jungen [J. Chem. Phys. 53, 4168 (1970)]. This value is greater than the result (σ = 1.7 × 10−18 cm2) given by Cremaschi [P. Cremaschi, Chem. Phys. Lett. 83, 106 (1981)] for a similar calculation.
    [CrossRef]
  49. F. Ackermann, E. Miescher, J. Mol. Spectrosc. 31, 400 (1960).
    [CrossRef]
  50. P. A. Freedman, Can. J. Phys. 55, 1387 (1977).
    [CrossRef]
  51. C. E. Otis, P. M. Johnson, Chem. Phys. Lett. 83, 73 (1981).
    [CrossRef]
  52. D. S. Zakheim, P. M. Johnson, Chem. Phys. 46, 263 (1980).
    [CrossRef]
  53. J. Morellec, D. Normand, G. Petite, Phys. Rev. A 14, 300 (1976).
    [CrossRef]
  54. J. R. Ackerhalt, B. W. Shore, Phys. Rev. A 16, 277 (1977).
    [CrossRef]
  55. J. R. Ackerhalt, J. H. Eberly, Phys. Rev. A 14, 1705 (1976).
    [CrossRef]
  56. A. B. Callear, I. W. M. Smith, Trans. Faraday Soc. 61, 2383 (1965).
    [CrossRef]
  57. D. S. King, R. R. Cavanagh, Opt. Lett. 8, 18 (1983).
    [CrossRef] [PubMed]
  58. A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970).
    [CrossRef]
  59. Peak spatial and temporal values of the laser intensity are more relevant to the nonlinear REMPI process than the average value If; the effective intensity for ionization may be two to three times larger than If.
  60. For NO/Ar mixtures, the onset of electron avalanche is more sensitive to increases in laser intensity. This results in a pronounced reduction in the range of voltages associated with the plateau region as the laser intensity is increased.
  61. Ref. 36, Chap. 1.
  62. While this procedure works well for NO/N2 mixtures, it may not give reliable results for mixtures more prone to avalanche, e.g., NO/Ar, where the proper probe voltage may depend more strongly on laser intensity.
  63. F. C. Fehsenfeld, J. Chem. Phys. 53, 2000 (1970).
    [CrossRef]
  64. L. G. Christophorou, Atomic and Molecular Radiation Physics (Wiley, New York, 1971).
  65. R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983).
    [CrossRef]
  66. P. J. H. Tjossem, T. A. Cool, unpublished work.
  67. J. E. M. Goldsmith, unpublished work.
  68. T. G. DiGiuseppe, J. W. Hudgens, M. C. Lin, J. Phys. Chem. 86, 36 (1982); Chem. Phys. Lett. 82, 267 (1981); J. Chem. Phys. 76, 3338 (1982).
    [CrossRef]
  69. B. H. Rockney, E. R. Grant, J. Chem. Phys. 77, 4257 (1982).
    [CrossRef]
  70. J. Danon, H. Zacharias, H. Rottke, K. H. Welge, J. Chem. Phys. 76, 2399 (1982).
    [CrossRef]
  71. J. W. Hudgens, T. G. DiGiuseppe, M. C. Lin, J. Chem. Phys. 79, 571 (1983).
    [CrossRef]
  72. R. W. Jones, N. Sivakumar, B. H. Rockney, P. L. Houston, E. R. Grant, Chem. Phys. Lett. 91, 271 (1982).
    [CrossRef]
  73. W. R. Ferrell, C. H. Chen, M. G. Payne, R. D. Willis, Chem. Phys. Lett. 97, 460 (1983).
    [CrossRef]
  74. S. T. Pratt, E. D. Poliakoff, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 78, 65 (1983).
    [CrossRef]
  75. S. T. Pratt, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 79, 3234 (1983).
    [CrossRef]

1983 (11)

J. E. M. Goldsmith, J. Chem. Phys. 78, 1610 (1983).
[CrossRef]

P. J. H. Tjossem, T. A. Cool, Chem. Phys. Lett. 100, 479 (1983).
[CrossRef]

The extensive volume of recent work makes it impractical to cite more than a few representative papers. Interesting examples are W. Y. Cheung, W. A. Chupka, S. D. Colson, D. Gaugacq, P. Avouris, J. J. Wynne, J. Chem. Phys. 78, 3625 (1983); D. W. Squire, M. B. Barbalas, R. B. Bernstein, J. Phys. Chem. 87, 1701 (1983); E. F. Marinero, R. Vasudev, R. N. Zare, J. Chem. Phys. 78, 692 (1983); A. J. Grimley, B. D. Kay, Chem. Phys. Lett. 98, 359 (1983); R. L. Whetten, K.-S. Fu, E. R. Grant, J. Chem. Phys. 79, 2626 (1983); R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983).
[CrossRef]

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, Combust. Flame 50, 189 (1983).
[CrossRef]

P. L. Varghese, R. K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 29, 205 (1983).
[CrossRef]

D. S. King, R. R. Cavanagh, Opt. Lett. 8, 18 (1983).
[CrossRef] [PubMed]

R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983).
[CrossRef]

J. W. Hudgens, T. G. DiGiuseppe, M. C. Lin, J. Chem. Phys. 79, 571 (1983).
[CrossRef]

W. R. Ferrell, C. H. Chen, M. G. Payne, R. D. Willis, Chem. Phys. Lett. 97, 460 (1983).
[CrossRef]

S. T. Pratt, E. D. Poliakoff, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 78, 65 (1983).
[CrossRef]

S. T. Pratt, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 79, 3234 (1983).
[CrossRef]

1982 (13)

R. W. Jones, N. Sivakumar, B. H. Rockney, P. L. Houston, E. R. Grant, Chem. Phys. Lett. 91, 271 (1982).
[CrossRef]

T. G. DiGiuseppe, J. W. Hudgens, M. C. Lin, J. Phys. Chem. 86, 36 (1982); Chem. Phys. Lett. 82, 267 (1981); J. Chem. Phys. 76, 3338 (1982).
[CrossRef]

B. H. Rockney, E. R. Grant, J. Chem. Phys. 77, 4257 (1982).
[CrossRef]

J. Danon, H. Zacharias, H. Rottke, K. H. Welge, J. Chem. Phys. 76, 2399 (1982).
[CrossRef]

J. S. Hayden, G. J. Diebold, J. Chem. Phys. 77, 4767 (1982).
[CrossRef]

W. G. Mallard, K. C. Smyth, Combust. Flame 44, 61 (1982).
[CrossRef]

M. J. Dyer, D. R. Crosley, Opt. Lett. 7, 382 (1982).
[CrossRef] [PubMed]

G. Kychakoff, R. D. Howe, R. K. Hanson, J. D. McDaniel, Appl. Opt. 21, 3225 (1982).
[CrossRef] [PubMed]

D. M. Lubman, M. N. Kronick, Anal. Chem. 54, 660 (1982).
[CrossRef]

W. G. Mallard, J. H. Miller, K. C. Smyth, J. Chem. Phys. 76, 3483 (1982).
[CrossRef]

B. H. Rockney, T. A. Cool, E. R. Grant, Chem. Phys. Lett. 87, 141 (1982).
[CrossRef]

K. C. Smyth, W. G. Mallard, J. Chem. Phys. 77, 1779 (1982).
[CrossRef]

J. E. M. Goldsmith, Opt. Lett. 7, 437 (1982).
[CrossRef] [PubMed]

1981 (10)

E. R. Sirkin, Y. Haas, Appl. Phys. 25, 253 (1981).
[CrossRef]

Several review papers on laser-based diagnostics appear in Opt. Eng. 20, 493 (1981).

D. Klick, K. A. Marko, L. Rimai, Appl. Opt. 20, 1178 (1981).
[CrossRef] [PubMed]

For a review of work through mid-1981, see P. M. Johnson, C. E. Otis, Ann. Rev. Phys. Chem. 32, 139 (1981).
[CrossRef]

M. G. Payne, C. H. Chen, G. S. Hurst, G. W. Foltz, Adv. At. Mol. Phys. 17, 229 (1981), and references therein.
[CrossRef]

W. K. Bischel, B. E. Perry, D. R. Crosley, Chem. Phys. Lett. 82, 85 (1981).
[CrossRef]

R. J. S. Morrison, E. R. Grant, J. Chem. Phys. 75, 49 (1981).
[CrossRef]

R. J. Cattolica, Appl. Opt. 20, 1156 (1981).
[CrossRef] [PubMed]

J. M. Schoenung, R. K. Hanson, Combust. Sci. Tech. 24, 227 (1981).
[CrossRef]

C. E. Otis, P. M. Johnson, Chem. Phys. Lett. 83, 73 (1981).
[CrossRef]

1980 (5)

D. S. Zakheim, P. M. Johnson, Chem. Phys. 46, 263 (1980).
[CrossRef]

H. Zacharias, R. Schmiedl, K. H. Welge, Appl. Phys. 21, 127 (1980).
[CrossRef]

D. R. Crosley, G. P. Smith, Appl. Opt. 19, 517 (1980).
[CrossRef] [PubMed]

M. Pealat, J. P. Taran, F. Moya, Opt. Laser Technol. 12, 21 (1980).
[CrossRef]

A. C. Eckbreth, Combust. Flame 39, 133 (1980).
[CrossRef]

1979 (5)

I. A. Stenhouse, D. R. Williams, J. B. Cole, M. D. Swards, Appl. Opt. 18, 3819 (1979).
[PubMed]

G. S. Hurst, M. G. Payne, J. D. Kramer, J. P. Young, Rev. Mod. Phys. 51, 767 (1979), and references therein.
[CrossRef]

R. P. Lucht, N. M. Laurendeau, Appl. Opt. 18, 856 (1979).
[CrossRef] [PubMed]

G. C. Bjorklund, R. R. Freeman, R. H. Storz, Opt. Commun. 31, 47 (1979).
[CrossRef]

L. Zandee, R. B. Bernstein, J. Chem. Phys. 71, 1359 (1979).
[CrossRef]

1978 (4)

D. Zakheim, P. Johnson, J. Chem. Phys. 68, 3644 (1978).
[CrossRef]

W. M. Jackson, C. S. Lin, Int. J. Chem. Kinet. 10, 945 (1978).
[CrossRef]

G. C. Bjorklund, C. P. Ausschnitt, R. R. Freeman, R. H. Storz, Appl. Phys. Lett. 33, 54 (1978).
[CrossRef]

J. W. Daily, Appl. Opt. 17, 225 (1978), and references therein.
[CrossRef] [PubMed]

1977 (3)

R. K. Hanson, P. A. Kuntz, C. H. Kruger, Appl. Opt. 16, 2045 (1977).
[CrossRef] [PubMed]

J. R. Ackerhalt, B. W. Shore, Phys. Rev. A 16, 277 (1977).
[CrossRef]

P. A. Freedman, Can. J. Phys. 55, 1387 (1977).
[CrossRef]

1976 (3)

J. R. Ackerhalt, J. H. Eberly, Phys. Rev. A 14, 1705 (1976).
[CrossRef]

J. Morellec, D. Normand, G. Petite, Phys. Rev. A 14, 300 (1976).
[CrossRef]

The values of the predissociation rate and spontaneous emission rate from the C2Π v = 0 state have been the subject of much discussion in the literature. The values given here are consistent with recent work reported in: J. Brzozowski, P. Erman, M. Lyyra, Phys. Scr. 14, 290 (1976); S. Yagi, T. Hikida, Y. More, Chem. Phys. Lett. 56, 113 (1978); O. Benoist d’Azy, R. Lopez-Delgado, A. Tramer, Chem. Phys. 9, 327 (1975). Previous work [A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970)] based on older C2Π radiative lifetime data gave a larger predissociation rate (1.6 × 109 sec−1).
[CrossRef]

1970 (2)

A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970).
[CrossRef]

F. C. Fehsenfeld, J. Chem. Phys. 53, 2000 (1970).
[CrossRef]

1965 (1)

A. B. Callear, I. W. M. Smith, Trans. Faraday Soc. 61, 2383 (1965).
[CrossRef]

1960 (2)

The cross section for photoionization of the C2Π v = 0 state at 381.9 nm (σ = 4 × 10−18 cm2) was calculated with the quantum defect method of Burgess and Seaton [A. Burgess, M. J. Seaton, Mon. Not. R. Astron. Soc. 120, 121 (1960)] with quantum defect data given by Jungen [J. Chem. Phys. 53, 4168 (1970)]. This value is greater than the result (σ = 1.7 × 10−18 cm2) given by Cremaschi [P. Cremaschi, Chem. Phys. Lett. 83, 106 (1981)] for a similar calculation.
[CrossRef]

F. Ackermann, E. Miescher, J. Mol. Spectrosc. 31, 400 (1960).
[CrossRef]

Ackerhalt, J. R.

J. R. Ackerhalt, B. W. Shore, Phys. Rev. A 16, 277 (1977).
[CrossRef]

J. R. Ackerhalt, J. H. Eberly, Phys. Rev. A 14, 1705 (1976).
[CrossRef]

Ackermann, F.

F. Ackermann, E. Miescher, J. Mol. Spectrosc. 31, 400 (1960).
[CrossRef]

Ausschnitt, C. P.

G. C. Bjorklund, C. P. Ausschnitt, R. R. Freeman, R. H. Storz, Appl. Phys. Lett. 33, 54 (1978).
[CrossRef]

Avouris, P.

The extensive volume of recent work makes it impractical to cite more than a few representative papers. Interesting examples are W. Y. Cheung, W. A. Chupka, S. D. Colson, D. Gaugacq, P. Avouris, J. J. Wynne, J. Chem. Phys. 78, 3625 (1983); D. W. Squire, M. B. Barbalas, R. B. Bernstein, J. Phys. Chem. 87, 1701 (1983); E. F. Marinero, R. Vasudev, R. N. Zare, J. Chem. Phys. 78, 692 (1983); A. J. Grimley, B. D. Kay, Chem. Phys. Lett. 98, 359 (1983); R. L. Whetten, K.-S. Fu, E. R. Grant, J. Chem. Phys. 79, 2626 (1983); R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983).
[CrossRef]

Bernstein, R. B.

L. Zandee, R. B. Bernstein, J. Chem. Phys. 71, 1359 (1979).
[CrossRef]

D. A. Lichtin, L. Zandee, R. B. Bernstein in Lasers in Chemical Analysis, G. Hieftje, J. Travis, F. Lytle, Eds. (Humana, Clifton, N.J.1981), Chap. 6.

Bischel, W. K.

W. K. Bischel, B. E. Perry, D. R. Crosley, Chem. Phys. Lett. 82, 85 (1981).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, R. R. Freeman, R. H. Storz, Opt. Commun. 31, 47 (1979).
[CrossRef]

G. C. Bjorklund, C. P. Ausschnitt, R. R. Freeman, R. H. Storz, Appl. Phys. Lett. 33, 54 (1978).
[CrossRef]

Brzozowski, J.

The values of the predissociation rate and spontaneous emission rate from the C2Π v = 0 state have been the subject of much discussion in the literature. The values given here are consistent with recent work reported in: J. Brzozowski, P. Erman, M. Lyyra, Phys. Scr. 14, 290 (1976); S. Yagi, T. Hikida, Y. More, Chem. Phys. Lett. 56, 113 (1978); O. Benoist d’Azy, R. Lopez-Delgado, A. Tramer, Chem. Phys. 9, 327 (1975). Previous work [A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970)] based on older C2Π radiative lifetime data gave a larger predissociation rate (1.6 × 109 sec−1).
[CrossRef]

Burgess, A.

The cross section for photoionization of the C2Π v = 0 state at 381.9 nm (σ = 4 × 10−18 cm2) was calculated with the quantum defect method of Burgess and Seaton [A. Burgess, M. J. Seaton, Mon. Not. R. Astron. Soc. 120, 121 (1960)] with quantum defect data given by Jungen [J. Chem. Phys. 53, 4168 (1970)]. This value is greater than the result (σ = 1.7 × 10−18 cm2) given by Cremaschi [P. Cremaschi, Chem. Phys. Lett. 83, 106 (1981)] for a similar calculation.
[CrossRef]

Callear, A. B.

A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970).
[CrossRef]

A. B. Callear, I. W. M. Smith, Trans. Faraday Soc. 61, 2383 (1965).
[CrossRef]

Cattolica, R. J.

Cavanagh, R. R.

Chen, C. H.

W. R. Ferrell, C. H. Chen, M. G. Payne, R. D. Willis, Chem. Phys. Lett. 97, 460 (1983).
[CrossRef]

M. G. Payne, C. H. Chen, G. S. Hurst, G. W. Foltz, Adv. At. Mol. Phys. 17, 229 (1981), and references therein.
[CrossRef]

Cheung, W. Y.

The extensive volume of recent work makes it impractical to cite more than a few representative papers. Interesting examples are W. Y. Cheung, W. A. Chupka, S. D. Colson, D. Gaugacq, P. Avouris, J. J. Wynne, J. Chem. Phys. 78, 3625 (1983); D. W. Squire, M. B. Barbalas, R. B. Bernstein, J. Phys. Chem. 87, 1701 (1983); E. F. Marinero, R. Vasudev, R. N. Zare, J. Chem. Phys. 78, 692 (1983); A. J. Grimley, B. D. Kay, Chem. Phys. Lett. 98, 359 (1983); R. L. Whetten, K.-S. Fu, E. R. Grant, J. Chem. Phys. 79, 2626 (1983); R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983).
[CrossRef]

Christophorou, L. G.

L. G. Christophorou, Atomic and Molecular Radiation Physics (Wiley, New York, 1971).

Chupka, W. A.

The extensive volume of recent work makes it impractical to cite more than a few representative papers. Interesting examples are W. Y. Cheung, W. A. Chupka, S. D. Colson, D. Gaugacq, P. Avouris, J. J. Wynne, J. Chem. Phys. 78, 3625 (1983); D. W. Squire, M. B. Barbalas, R. B. Bernstein, J. Phys. Chem. 87, 1701 (1983); E. F. Marinero, R. Vasudev, R. N. Zare, J. Chem. Phys. 78, 692 (1983); A. J. Grimley, B. D. Kay, Chem. Phys. Lett. 98, 359 (1983); R. L. Whetten, K.-S. Fu, E. R. Grant, J. Chem. Phys. 79, 2626 (1983); R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983).
[CrossRef]

Cole, J. B.

Colson, S. D.

The extensive volume of recent work makes it impractical to cite more than a few representative papers. Interesting examples are W. Y. Cheung, W. A. Chupka, S. D. Colson, D. Gaugacq, P. Avouris, J. J. Wynne, J. Chem. Phys. 78, 3625 (1983); D. W. Squire, M. B. Barbalas, R. B. Bernstein, J. Phys. Chem. 87, 1701 (1983); E. F. Marinero, R. Vasudev, R. N. Zare, J. Chem. Phys. 78, 692 (1983); A. J. Grimley, B. D. Kay, Chem. Phys. Lett. 98, 359 (1983); R. L. Whetten, K.-S. Fu, E. R. Grant, J. Chem. Phys. 79, 2626 (1983); R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983).
[CrossRef]

Cool, T. A.

P. J. H. Tjossem, T. A. Cool, Chem. Phys. Lett. 100, 479 (1983).
[CrossRef]

B. H. Rockney, T. A. Cool, E. R. Grant, Chem. Phys. Lett. 87, 141 (1982).
[CrossRef]

P. J. H. Tjossem, T. A. Cool, unpublished work.

Craggs, J. O.

S. C. Curran, J. O. Craggs, Counting Tubes (Academic, New York, 1949).

Crosley, D. R.

Curran, S. C.

S. C. Curran, J. O. Craggs, Counting Tubes (Academic, New York, 1949).

Daily, J. W.

Danon, J.

J. Danon, H. Zacharias, H. Rottke, K. H. Welge, J. Chem. Phys. 76, 2399 (1982).
[CrossRef]

Dehmer, J. L.

S. T. Pratt, E. D. Poliakoff, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 78, 65 (1983).
[CrossRef]

S. T. Pratt, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 79, 3234 (1983).
[CrossRef]

Dehmer, P. M.

S. T. Pratt, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 79, 3234 (1983).
[CrossRef]

S. T. Pratt, E. D. Poliakoff, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 78, 65 (1983).
[CrossRef]

Diebold, G. J.

J. S. Hayden, G. J. Diebold, J. Chem. Phys. 77, 4767 (1982).
[CrossRef]

DiGiuseppe, T. G.

J. W. Hudgens, T. G. DiGiuseppe, M. C. Lin, J. Chem. Phys. 79, 571 (1983).
[CrossRef]

T. G. DiGiuseppe, J. W. Hudgens, M. C. Lin, J. Phys. Chem. 86, 36 (1982); Chem. Phys. Lett. 82, 267 (1981); J. Chem. Phys. 76, 3338 (1982).
[CrossRef]

Dyer, M. J.

Eberly, J. H.

J. R. Ackerhalt, J. H. Eberly, Phys. Rev. A 14, 1705 (1976).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Combust. Flame 39, 133 (1980).
[CrossRef]

Erman, P.

The values of the predissociation rate and spontaneous emission rate from the C2Π v = 0 state have been the subject of much discussion in the literature. The values given here are consistent with recent work reported in: J. Brzozowski, P. Erman, M. Lyyra, Phys. Scr. 14, 290 (1976); S. Yagi, T. Hikida, Y. More, Chem. Phys. Lett. 56, 113 (1978); O. Benoist d’Azy, R. Lopez-Delgado, A. Tramer, Chem. Phys. 9, 327 (1975). Previous work [A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970)] based on older C2Π radiative lifetime data gave a larger predissociation rate (1.6 × 109 sec−1).
[CrossRef]

Fehsenfeld, F. C.

F. C. Fehsenfeld, J. Chem. Phys. 53, 2000 (1970).
[CrossRef]

Ferrell, W. R.

W. R. Ferrell, C. H. Chen, M. G. Payne, R. D. Willis, Chem. Phys. Lett. 97, 460 (1983).
[CrossRef]

Foltz, G. W.

M. G. Payne, C. H. Chen, G. S. Hurst, G. W. Foltz, Adv. At. Mol. Phys. 17, 229 (1981), and references therein.
[CrossRef]

Freedman, P. A.

P. A. Freedman, Can. J. Phys. 55, 1387 (1977).
[CrossRef]

Freeman, R. R.

G. C. Bjorklund, R. R. Freeman, R. H. Storz, Opt. Commun. 31, 47 (1979).
[CrossRef]

G. C. Bjorklund, C. P. Ausschnitt, R. R. Freeman, R. H. Storz, Appl. Phys. Lett. 33, 54 (1978).
[CrossRef]

Fu, K.-S.

R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983).
[CrossRef]

Gaugacq, D.

The extensive volume of recent work makes it impractical to cite more than a few representative papers. Interesting examples are W. Y. Cheung, W. A. Chupka, S. D. Colson, D. Gaugacq, P. Avouris, J. J. Wynne, J. Chem. Phys. 78, 3625 (1983); D. W. Squire, M. B. Barbalas, R. B. Bernstein, J. Phys. Chem. 87, 1701 (1983); E. F. Marinero, R. Vasudev, R. N. Zare, J. Chem. Phys. 78, 692 (1983); A. J. Grimley, B. D. Kay, Chem. Phys. Lett. 98, 359 (1983); R. L. Whetten, K.-S. Fu, E. R. Grant, J. Chem. Phys. 79, 2626 (1983); R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983).
[CrossRef]

Goldsmith, J. E. M.

J. E. M. Goldsmith, J. Chem. Phys. 78, 1610 (1983).
[CrossRef]

J. E. M. Goldsmith, Opt. Lett. 7, 437 (1982).
[CrossRef] [PubMed]

J. E. M. Goldsmith, unpublished work.

Grant, E. R.

R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983).
[CrossRef]

B. H. Rockney, E. R. Grant, J. Chem. Phys. 77, 4257 (1982).
[CrossRef]

B. H. Rockney, T. A. Cool, E. R. Grant, Chem. Phys. Lett. 87, 141 (1982).
[CrossRef]

R. W. Jones, N. Sivakumar, B. H. Rockney, P. L. Houston, E. R. Grant, Chem. Phys. Lett. 91, 271 (1982).
[CrossRef]

R. J. S. Morrison, E. R. Grant, J. Chem. Phys. 75, 49 (1981).
[CrossRef]

Haas, Y.

E. R. Sirkin, Y. Haas, Appl. Phys. 25, 253 (1981).
[CrossRef]

Hanson, R. K.

P. L. Varghese, R. K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 29, 205 (1983).
[CrossRef]

G. Kychakoff, R. D. Howe, R. K. Hanson, J. D. McDaniel, Appl. Opt. 21, 3225 (1982).
[CrossRef] [PubMed]

J. M. Schoenung, R. K. Hanson, Combust. Sci. Tech. 24, 227 (1981).
[CrossRef]

R. K. Hanson, P. A. Kuntz, C. H. Kruger, Appl. Opt. 16, 2045 (1977).
[CrossRef] [PubMed]

Hayden, J. S.

J. S. Hayden, G. J. Diebold, J. Chem. Phys. 77, 4767 (1982).
[CrossRef]

Houston, P. L.

R. W. Jones, N. Sivakumar, B. H. Rockney, P. L. Houston, E. R. Grant, Chem. Phys. Lett. 91, 271 (1982).
[CrossRef]

Howe, R. D.

Hudgens, J. W.

J. W. Hudgens, T. G. DiGiuseppe, M. C. Lin, J. Chem. Phys. 79, 571 (1983).
[CrossRef]

T. G. DiGiuseppe, J. W. Hudgens, M. C. Lin, J. Phys. Chem. 86, 36 (1982); Chem. Phys. Lett. 82, 267 (1981); J. Chem. Phys. 76, 3338 (1982).
[CrossRef]

Hurst, G. S.

M. G. Payne, C. H. Chen, G. S. Hurst, G. W. Foltz, Adv. At. Mol. Phys. 17, 229 (1981), and references therein.
[CrossRef]

G. S. Hurst, M. G. Payne, J. D. Kramer, J. P. Young, Rev. Mod. Phys. 51, 767 (1979), and references therein.
[CrossRef]

Jackson, W. M.

W. M. Jackson, C. S. Lin, Int. J. Chem. Kinet. 10, 945 (1978).
[CrossRef]

Johnson, P.

D. Zakheim, P. Johnson, J. Chem. Phys. 68, 3644 (1978).
[CrossRef]

Johnson, P. M.

C. E. Otis, P. M. Johnson, Chem. Phys. Lett. 83, 73 (1981).
[CrossRef]

For a review of work through mid-1981, see P. M. Johnson, C. E. Otis, Ann. Rev. Phys. Chem. 32, 139 (1981).
[CrossRef]

D. S. Zakheim, P. M. Johnson, Chem. Phys. 46, 263 (1980).
[CrossRef]

Jones, R. W.

R. W. Jones, N. Sivakumar, B. H. Rockney, P. L. Houston, E. R. Grant, Chem. Phys. Lett. 91, 271 (1982).
[CrossRef]

King, D. S.

Klick, D.

Kramer, J. D.

G. S. Hurst, M. G. Payne, J. D. Kramer, J. P. Young, Rev. Mod. Phys. 51, 767 (1979), and references therein.
[CrossRef]

Kronick, M. N.

D. M. Lubman, M. N. Kronick, Anal. Chem. 54, 660 (1982).
[CrossRef]

Kruger, C. H.

Kuntz, P. A.

Kychakoff, G.

Laurendeau, N. M.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, Combust. Flame 50, 189 (1983).
[CrossRef]

R. P. Lucht, N. M. Laurendeau, Appl. Opt. 18, 856 (1979).
[CrossRef] [PubMed]

Lichtin, D. A.

D. A. Lichtin, L. Zandee, R. B. Bernstein in Lasers in Chemical Analysis, G. Hieftje, J. Travis, F. Lytle, Eds. (Humana, Clifton, N.J.1981), Chap. 6.

Lin, C. S.

W. M. Jackson, C. S. Lin, Int. J. Chem. Kinet. 10, 945 (1978).
[CrossRef]

Lin, M. C.

J. W. Hudgens, T. G. DiGiuseppe, M. C. Lin, J. Chem. Phys. 79, 571 (1983).
[CrossRef]

T. G. DiGiuseppe, J. W. Hudgens, M. C. Lin, J. Phys. Chem. 86, 36 (1982); Chem. Phys. Lett. 82, 267 (1981); J. Chem. Phys. 76, 3338 (1982).
[CrossRef]

Lubman, D. M.

D. M. Lubman, M. N. Kronick, Anal. Chem. 54, 660 (1982).
[CrossRef]

Lucht, R. P.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, Combust. Flame 50, 189 (1983).
[CrossRef]

R. P. Lucht, N. M. Laurendeau, Appl. Opt. 18, 856 (1979).
[CrossRef] [PubMed]

Lyyra, M.

The values of the predissociation rate and spontaneous emission rate from the C2Π v = 0 state have been the subject of much discussion in the literature. The values given here are consistent with recent work reported in: J. Brzozowski, P. Erman, M. Lyyra, Phys. Scr. 14, 290 (1976); S. Yagi, T. Hikida, Y. More, Chem. Phys. Lett. 56, 113 (1978); O. Benoist d’Azy, R. Lopez-Delgado, A. Tramer, Chem. Phys. 9, 327 (1975). Previous work [A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970)] based on older C2Π radiative lifetime data gave a larger predissociation rate (1.6 × 109 sec−1).
[CrossRef]

Mallard, W. G.

W. G. Mallard, K. C. Smyth, Combust. Flame 44, 61 (1982).
[CrossRef]

W. G. Mallard, J. H. Miller, K. C. Smyth, J. Chem. Phys. 76, 3483 (1982).
[CrossRef]

K. C. Smyth, W. G. Mallard, J. Chem. Phys. 77, 1779 (1982).
[CrossRef]

Marko, K. A.

McDaniel, J. D.

Miescher, E.

F. Ackermann, E. Miescher, J. Mol. Spectrosc. 31, 400 (1960).
[CrossRef]

Miller, J. H.

W. G. Mallard, J. H. Miller, K. C. Smyth, J. Chem. Phys. 76, 3483 (1982).
[CrossRef]

Morellec, J.

J. Morellec, D. Normand, G. Petite, Phys. Rev. A 14, 300 (1976).
[CrossRef]

Morrison, R. J. S.

R. J. S. Morrison, E. R. Grant, J. Chem. Phys. 75, 49 (1981).
[CrossRef]

Moya, F.

M. Pealat, J. P. Taran, F. Moya, Opt. Laser Technol. 12, 21 (1980).
[CrossRef]

Normand, D.

J. Morellec, D. Normand, G. Petite, Phys. Rev. A 14, 300 (1976).
[CrossRef]

Otis, C. E.

C. E. Otis, P. M. Johnson, Chem. Phys. Lett. 83, 73 (1981).
[CrossRef]

For a review of work through mid-1981, see P. M. Johnson, C. E. Otis, Ann. Rev. Phys. Chem. 32, 139 (1981).
[CrossRef]

Payne, M. G.

W. R. Ferrell, C. H. Chen, M. G. Payne, R. D. Willis, Chem. Phys. Lett. 97, 460 (1983).
[CrossRef]

M. G. Payne, C. H. Chen, G. S. Hurst, G. W. Foltz, Adv. At. Mol. Phys. 17, 229 (1981), and references therein.
[CrossRef]

G. S. Hurst, M. G. Payne, J. D. Kramer, J. P. Young, Rev. Mod. Phys. 51, 767 (1979), and references therein.
[CrossRef]

Pealat, M.

M. Pealat, J. P. Taran, F. Moya, Opt. Laser Technol. 12, 21 (1980).
[CrossRef]

Perry, B. E.

W. K. Bischel, B. E. Perry, D. R. Crosley, Chem. Phys. Lett. 82, 85 (1981).
[CrossRef]

Petite, G.

J. Morellec, D. Normand, G. Petite, Phys. Rev. A 14, 300 (1976).
[CrossRef]

Pilling, M. J.

A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970).
[CrossRef]

Poliakoff, E. D.

S. T. Pratt, E. D. Poliakoff, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 78, 65 (1983).
[CrossRef]

Pratt, S. T.

S. T. Pratt, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 79, 3234 (1983).
[CrossRef]

S. T. Pratt, E. D. Poliakoff, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 78, 65 (1983).
[CrossRef]

Rimai, L.

Rockney, B. H.

B. H. Rockney, T. A. Cool, E. R. Grant, Chem. Phys. Lett. 87, 141 (1982).
[CrossRef]

B. H. Rockney, E. R. Grant, J. Chem. Phys. 77, 4257 (1982).
[CrossRef]

R. W. Jones, N. Sivakumar, B. H. Rockney, P. L. Houston, E. R. Grant, Chem. Phys. Lett. 91, 271 (1982).
[CrossRef]

Rossi, B. B.

B. B. Rossi, H. H. Staub, Ionization Chambers and Counters (McGraw-Hill, New York, 1949).

Rottke, H.

J. Danon, H. Zacharias, H. Rottke, K. H. Welge, J. Chem. Phys. 76, 2399 (1982).
[CrossRef]

Schmiedl, R.

H. Zacharias, R. Schmiedl, K. H. Welge, Appl. Phys. 21, 127 (1980).
[CrossRef]

Schoenung, J. M.

J. M. Schoenung, R. K. Hanson, Combust. Sci. Tech. 24, 227 (1981).
[CrossRef]

Seaton, M. J.

The cross section for photoionization of the C2Π v = 0 state at 381.9 nm (σ = 4 × 10−18 cm2) was calculated with the quantum defect method of Burgess and Seaton [A. Burgess, M. J. Seaton, Mon. Not. R. Astron. Soc. 120, 121 (1960)] with quantum defect data given by Jungen [J. Chem. Phys. 53, 4168 (1970)]. This value is greater than the result (σ = 1.7 × 10−18 cm2) given by Cremaschi [P. Cremaschi, Chem. Phys. Lett. 83, 106 (1981)] for a similar calculation.
[CrossRef]

Shore, B. W.

J. R. Ackerhalt, B. W. Shore, Phys. Rev. A 16, 277 (1977).
[CrossRef]

Sirkin, E. R.

E. R. Sirkin, Y. Haas, Appl. Phys. 25, 253 (1981).
[CrossRef]

Sivakumar, N.

R. W. Jones, N. Sivakumar, B. H. Rockney, P. L. Houston, E. R. Grant, Chem. Phys. Lett. 91, 271 (1982).
[CrossRef]

Smith, G. P.

Smith, I. W. M.

A. B. Callear, I. W. M. Smith, Trans. Faraday Soc. 61, 2383 (1965).
[CrossRef]

Smyth, K. C.

W. G. Mallard, K. C. Smyth, Combust. Flame 44, 61 (1982).
[CrossRef]

W. G. Mallard, J. H. Miller, K. C. Smyth, J. Chem. Phys. 76, 3483 (1982).
[CrossRef]

K. C. Smyth, W. G. Mallard, J. Chem. Phys. 77, 1779 (1982).
[CrossRef]

Staub, H. H.

B. B. Rossi, H. H. Staub, Ionization Chambers and Counters (McGraw-Hill, New York, 1949).

Stenhouse, I. A.

Storz, R. H.

G. C. Bjorklund, R. R. Freeman, R. H. Storz, Opt. Commun. 31, 47 (1979).
[CrossRef]

G. C. Bjorklund, C. P. Ausschnitt, R. R. Freeman, R. H. Storz, Appl. Phys. Lett. 33, 54 (1978).
[CrossRef]

Swards, M. D.

Sweeney, D. W.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, Combust. Flame 50, 189 (1983).
[CrossRef]

Tapper, R. S.

R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983).
[CrossRef]

Taran, J. P.

M. Pealat, J. P. Taran, F. Moya, Opt. Laser Technol. 12, 21 (1980).
[CrossRef]

Tjossem, P. J. H.

P. J. H. Tjossem, T. A. Cool, Chem. Phys. Lett. 100, 479 (1983).
[CrossRef]

P. J. H. Tjossem, T. A. Cool, unpublished work.

Varghese, P. L.

P. L. Varghese, R. K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 29, 205 (1983).
[CrossRef]

Welge, K. H.

J. Danon, H. Zacharias, H. Rottke, K. H. Welge, J. Chem. Phys. 76, 2399 (1982).
[CrossRef]

H. Zacharias, R. Schmiedl, K. H. Welge, Appl. Phys. 21, 127 (1980).
[CrossRef]

Whetten, R. L.

R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983).
[CrossRef]

Wilkinson, D. H.

D. H. Wilkinson, Ionization Chambers and Counters (Cambridge U. P., London, 1950).

Williams, D. R.

Willis, R. D.

W. R. Ferrell, C. H. Chen, M. G. Payne, R. D. Willis, Chem. Phys. Lett. 97, 460 (1983).
[CrossRef]

Wynne, J. J.

The extensive volume of recent work makes it impractical to cite more than a few representative papers. Interesting examples are W. Y. Cheung, W. A. Chupka, S. D. Colson, D. Gaugacq, P. Avouris, J. J. Wynne, J. Chem. Phys. 78, 3625 (1983); D. W. Squire, M. B. Barbalas, R. B. Bernstein, J. Phys. Chem. 87, 1701 (1983); E. F. Marinero, R. Vasudev, R. N. Zare, J. Chem. Phys. 78, 692 (1983); A. J. Grimley, B. D. Kay, Chem. Phys. Lett. 98, 359 (1983); R. L. Whetten, K.-S. Fu, E. R. Grant, J. Chem. Phys. 79, 2626 (1983); R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983).
[CrossRef]

Young, J. P.

G. S. Hurst, M. G. Payne, J. D. Kramer, J. P. Young, Rev. Mod. Phys. 51, 767 (1979), and references therein.
[CrossRef]

Zacharias, H.

J. Danon, H. Zacharias, H. Rottke, K. H. Welge, J. Chem. Phys. 76, 2399 (1982).
[CrossRef]

H. Zacharias, R. Schmiedl, K. H. Welge, Appl. Phys. 21, 127 (1980).
[CrossRef]

Zakheim, D.

D. Zakheim, P. Johnson, J. Chem. Phys. 68, 3644 (1978).
[CrossRef]

Zakheim, D. S.

D. S. Zakheim, P. M. Johnson, Chem. Phys. 46, 263 (1980).
[CrossRef]

Zandee, L.

L. Zandee, R. B. Bernstein, J. Chem. Phys. 71, 1359 (1979).
[CrossRef]

D. A. Lichtin, L. Zandee, R. B. Bernstein in Lasers in Chemical Analysis, G. Hieftje, J. Travis, F. Lytle, Eds. (Humana, Clifton, N.J.1981), Chap. 6.

Adv. At. Mol. Phys. (1)

M. G. Payne, C. H. Chen, G. S. Hurst, G. W. Foltz, Adv. At. Mol. Phys. 17, 229 (1981), and references therein.
[CrossRef]

Anal. Chem. (1)

D. M. Lubman, M. N. Kronick, Anal. Chem. 54, 660 (1982).
[CrossRef]

Ann. Rev. Phys. Chem. (1)

For a review of work through mid-1981, see P. M. Johnson, C. E. Otis, Ann. Rev. Phys. Chem. 32, 139 (1981).
[CrossRef]

Appl. Opt. (8)

Appl. Phys. (2)

H. Zacharias, R. Schmiedl, K. H. Welge, Appl. Phys. 21, 127 (1980).
[CrossRef]

E. R. Sirkin, Y. Haas, Appl. Phys. 25, 253 (1981).
[CrossRef]

Appl. Phys. Lett. (1)

G. C. Bjorklund, C. P. Ausschnitt, R. R. Freeman, R. H. Storz, Appl. Phys. Lett. 33, 54 (1978).
[CrossRef]

Can. J. Phys. (1)

P. A. Freedman, Can. J. Phys. 55, 1387 (1977).
[CrossRef]

Chem. Phys. (1)

D. S. Zakheim, P. M. Johnson, Chem. Phys. 46, 263 (1980).
[CrossRef]

Chem. Phys. Lett. (6)

C. E. Otis, P. M. Johnson, Chem. Phys. Lett. 83, 73 (1981).
[CrossRef]

R. W. Jones, N. Sivakumar, B. H. Rockney, P. L. Houston, E. R. Grant, Chem. Phys. Lett. 91, 271 (1982).
[CrossRef]

W. R. Ferrell, C. H. Chen, M. G. Payne, R. D. Willis, Chem. Phys. Lett. 97, 460 (1983).
[CrossRef]

P. J. H. Tjossem, T. A. Cool, Chem. Phys. Lett. 100, 479 (1983).
[CrossRef]

B. H. Rockney, T. A. Cool, E. R. Grant, Chem. Phys. Lett. 87, 141 (1982).
[CrossRef]

W. K. Bischel, B. E. Perry, D. R. Crosley, Chem. Phys. Lett. 82, 85 (1981).
[CrossRef]

Combust. Flame (3)

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, Combust. Flame 50, 189 (1983).
[CrossRef]

W. G. Mallard, K. C. Smyth, Combust. Flame 44, 61 (1982).
[CrossRef]

A. C. Eckbreth, Combust. Flame 39, 133 (1980).
[CrossRef]

Combust. Sci. Tech. (1)

J. M. Schoenung, R. K. Hanson, Combust. Sci. Tech. 24, 227 (1981).
[CrossRef]

Int. J. Chem. Kinet. (1)

W. M. Jackson, C. S. Lin, Int. J. Chem. Kinet. 10, 945 (1978).
[CrossRef]

J. Chem. Phys. (14)

L. Zandee, R. B. Bernstein, J. Chem. Phys. 71, 1359 (1979).
[CrossRef]

D. Zakheim, P. Johnson, J. Chem. Phys. 68, 3644 (1978).
[CrossRef]

J. S. Hayden, G. J. Diebold, J. Chem. Phys. 77, 4767 (1982).
[CrossRef]

S. T. Pratt, E. D. Poliakoff, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 78, 65 (1983).
[CrossRef]

S. T. Pratt, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 79, 3234 (1983).
[CrossRef]

B. H. Rockney, E. R. Grant, J. Chem. Phys. 77, 4257 (1982).
[CrossRef]

J. Danon, H. Zacharias, H. Rottke, K. H. Welge, J. Chem. Phys. 76, 2399 (1982).
[CrossRef]

J. W. Hudgens, T. G. DiGiuseppe, M. C. Lin, J. Chem. Phys. 79, 571 (1983).
[CrossRef]

F. C. Fehsenfeld, J. Chem. Phys. 53, 2000 (1970).
[CrossRef]

R. J. S. Morrison, E. R. Grant, J. Chem. Phys. 75, 49 (1981).
[CrossRef]

K. C. Smyth, W. G. Mallard, J. Chem. Phys. 77, 1779 (1982).
[CrossRef]

W. G. Mallard, J. H. Miller, K. C. Smyth, J. Chem. Phys. 76, 3483 (1982).
[CrossRef]

J. E. M. Goldsmith, J. Chem. Phys. 78, 1610 (1983).
[CrossRef]

The extensive volume of recent work makes it impractical to cite more than a few representative papers. Interesting examples are W. Y. Cheung, W. A. Chupka, S. D. Colson, D. Gaugacq, P. Avouris, J. J. Wynne, J. Chem. Phys. 78, 3625 (1983); D. W. Squire, M. B. Barbalas, R. B. Bernstein, J. Phys. Chem. 87, 1701 (1983); E. F. Marinero, R. Vasudev, R. N. Zare, J. Chem. Phys. 78, 692 (1983); A. J. Grimley, B. D. Kay, Chem. Phys. Lett. 98, 359 (1983); R. L. Whetten, K.-S. Fu, E. R. Grant, J. Chem. Phys. 79, 2626 (1983); R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983).
[CrossRef]

J. Mol. Spectrosc. (1)

F. Ackermann, E. Miescher, J. Mol. Spectrosc. 31, 400 (1960).
[CrossRef]

J. Phys. Chem. (2)

R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983).
[CrossRef]

T. G. DiGiuseppe, J. W. Hudgens, M. C. Lin, J. Phys. Chem. 86, 36 (1982); Chem. Phys. Lett. 82, 267 (1981); J. Chem. Phys. 76, 3338 (1982).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

P. L. Varghese, R. K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 29, 205 (1983).
[CrossRef]

Mon. Not. R. Astron. Soc. (1)

The cross section for photoionization of the C2Π v = 0 state at 381.9 nm (σ = 4 × 10−18 cm2) was calculated with the quantum defect method of Burgess and Seaton [A. Burgess, M. J. Seaton, Mon. Not. R. Astron. Soc. 120, 121 (1960)] with quantum defect data given by Jungen [J. Chem. Phys. 53, 4168 (1970)]. This value is greater than the result (σ = 1.7 × 10−18 cm2) given by Cremaschi [P. Cremaschi, Chem. Phys. Lett. 83, 106 (1981)] for a similar calculation.
[CrossRef]

Opt. Commun. (1)

G. C. Bjorklund, R. R. Freeman, R. H. Storz, Opt. Commun. 31, 47 (1979).
[CrossRef]

Opt. Eng. (1)

Several review papers on laser-based diagnostics appear in Opt. Eng. 20, 493 (1981).

Opt. Laser Technol. (1)

M. Pealat, J. P. Taran, F. Moya, Opt. Laser Technol. 12, 21 (1980).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (3)

J. Morellec, D. Normand, G. Petite, Phys. Rev. A 14, 300 (1976).
[CrossRef]

J. R. Ackerhalt, B. W. Shore, Phys. Rev. A 16, 277 (1977).
[CrossRef]

J. R. Ackerhalt, J. H. Eberly, Phys. Rev. A 14, 1705 (1976).
[CrossRef]

Phys. Scr. (1)

The values of the predissociation rate and spontaneous emission rate from the C2Π v = 0 state have been the subject of much discussion in the literature. The values given here are consistent with recent work reported in: J. Brzozowski, P. Erman, M. Lyyra, Phys. Scr. 14, 290 (1976); S. Yagi, T. Hikida, Y. More, Chem. Phys. Lett. 56, 113 (1978); O. Benoist d’Azy, R. Lopez-Delgado, A. Tramer, Chem. Phys. 9, 327 (1975). Previous work [A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970)] based on older C2Π radiative lifetime data gave a larger predissociation rate (1.6 × 109 sec−1).
[CrossRef]

Rev. Mod. Phys. (1)

G. S. Hurst, M. G. Payne, J. D. Kramer, J. P. Young, Rev. Mod. Phys. 51, 767 (1979), and references therein.
[CrossRef]

Trans. Faraday Soc. (2)

A. B. Callear, I. W. M. Smith, Trans. Faraday Soc. 61, 2383 (1965).
[CrossRef]

A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970).
[CrossRef]

Other (16)

Peak spatial and temporal values of the laser intensity are more relevant to the nonlinear REMPI process than the average value If; the effective intensity for ionization may be two to three times larger than If.

For NO/Ar mixtures, the onset of electron avalanche is more sensitive to increases in laser intensity. This results in a pronounced reduction in the range of voltages associated with the plateau region as the laser intensity is increased.

Ref. 36, Chap. 1.

While this procedure works well for NO/N2 mixtures, it may not give reliable results for mixtures more prone to avalanche, e.g., NO/Ar, where the proper probe voltage may depend more strongly on laser intensity.

L. G. Christophorou, Atomic and Molecular Radiation Physics (Wiley, New York, 1971).

P. J. H. Tjossem, T. A. Cool, unpublished work.

J. E. M. Goldsmith, unpublished work.

For NO/Ar mixtures, a strong tendency for avalanche ionization exists at high pressures (700 Torr), which substantially reduces the range of plateau voltages compared with the NO/N2 mixture case.

D. A. Lichtin, L. Zandee, R. B. Bernstein in Lasers in Chemical Analysis, G. Hieftje, J. Travis, F. Lytle, Eds. (Humana, Clifton, N.J.1981), Chap. 6.

“Experimental Diagnostics in Gas Phase Combustion Systems,” in Progress in Astronautics and Aeronautics, Vol. 53, B. J. Zinn, Ed. (American Institute of Aeronautics and Astronautics, New York, 1977).

M. Lapp, C. M. Penney, Eds. Laser Raman Gas Diagnostics (Plenum, New York, 1974).

D. R. Crosley, Ed. Laser Probes for Combustion Diagnostics, American Chemical Society Symposium Series No. 134 (American Chemical Society, Washington, D.C., 1980).
[CrossRef]

D. H. Wilkinson, Ionization Chambers and Counters (Cambridge U. P., London, 1950).

B. B. Rossi, H. H. Staub, Ionization Chambers and Counters (McGraw-Hill, New York, 1949).

S. C. Curran, J. O. Craggs, Counting Tubes (Academic, New York, 1949).

Ref. 37, Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Ionization probe.

Fig. 2
Fig. 2

Electron detection pulse for an NO/N2 gas mixture obtained with the probe and circuit of Fig. 1.

Fig. 3
Fig. 3

Ionization probe signal-voltage characteristics as a function of total gas pressure for a pulse energy of 0.23 mJ.

Fig. 4
Fig. 4

Variation of plateau ionization signal with laser focal position for a 50-ppm NO/N2 mixture at a laser pulse energy of 0.23 mJ.

Fig. 5
Fig. 5

REMPI scheme for two-photon excitation via the C2Π ← X2Π(0,0) transition followed by single-photon photoionization at 382 nm to the NO+(X1+) state.

Fig. 6
Fig. 6

REMPI spectrum for the 2 + 1 ionization of NO via the C2Π ← X2Π (0,0) resonance. For a laser pulse energy of 0.3 mJ with a 100-ppm NO/N2 mixture at 140 Torr.

Fig. 7
Fig. 7

REMPI spectrum of Fig. 6 on an expanded wavelength scale to show the TxX2Π Q lines used for NO density measurements. For a laser pulse energy of 0.3 mJ with a 100-ppm NO/N2 mixture at 140 Torr.

Fig. 8
Fig. 8

Temporal profile of the dye laser pulse (10-shot average). The modulation of the pulse is caused by longitudinal mode beating effects57; the modulations exhibit pulse-to-pulse variations in amplitude.

Fig. 9
Fig. 9

Variation in laser intensity in the vicinity of the plane of best focus obtained from photographic measurements of laser spot sizes. The solid curve is given by the relationship of Eq. (17).

Fig. 10
Fig. 10

Dependence of the plateau ionization signal on laser pulse energy for 50-ppm NO/N2 and NO/Ar mixtures at pressures of 70 and 700 Torr.

Fig. 11
Fig. 11

Effect of a reduction in laser intensity on the probe signal-voltage characteristic. The ionization signal at the plateau varies as (E/E0)n, where n = 2 and E0 = 0.23 mJ for these data.

Fig. 12
Fig. 12

Effect of variations in NO concentration on the probe signal-voltage characteristic for a fixed pressure (100 Torr) and pulse energy of 0.23 mJ.

Fig. 13
Fig. 13

Plateau ionization signal for a laser pulse energy of 0.23 mJ as a function of NO concentration for NO/N2 mixtures at pressures of 70, 140, 350, and 700 Torr. The laser focus was located 1 mm from the anode surface.

Fig. 14
Fig. 14

Variation in plateau ionization signal as a function of total mixture pressure for a constant NO density (pressure) deduced from Fig. 13. The normalized signal represents the variation in the probe collection efficiency ζ with pressure (see text).

Fig. 15
Fig. 15

Temporal behavior of the probe ionization signal in the presence of an electronegative gas. The laser pulse energy was 0.23 mJ.

Fig. 16
Fig. 16

Probe signal-voltage characteristics illustrating the effects of electron attachment for a laser pulse energy of 0.23 mJ.

Tables (1)

Tables Icon

Table I Parameters for Three-Photon Resonance Ionization of NO with C2Π(v = 0) State

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Q t - = e N e [ V + - V ( x ) ] ( V + - V - ) .
Δ V e ( t ) + R C d ( Δ V e ) / d t = R I ( t ) .
0 T Δ V e ( t ) d t + R C ( Δ V e ) | 0 T = 0 T R I ( t ) d t .
A p = 0 T Δ V e ( t ) d t = R Q t - ,
d n + d t = ( σ I / h ν ) n * ,
d n * d t = ( α I 2 / h ν ) ( n 0 - n * ) - n * ( σ I / h ν + k q Q + 1 / τ ) ,
d n 0 d t = ( α I 2 / h ν ) ( n * - n 0 ) + n * ( k q Q + 1 / τ s ) ,
n + / n = [ λ 1 λ 2 ϕ / θ ( λ 1 - λ 2 ) ] { [ 1 - exp ( - λ 2 t ) ] } / λ 2 - [ 1 - exp ( - λ 1 t ) ] / λ 1 } ,
n * / n = [ λ 1 λ 2 / θ ( λ 1 - λ 2 ) ] { exp ( - λ 2 t ) - exp ( - λ 1 t ) } ,
n 0 / n = [ λ 1 λ 2 / θ ( λ 1 - λ 2 ) ] { [ ( θ / λ 2 ) - 1 ] exp ( - λ 2 t ) + [ 1 - ( θ / λ 1 ) ] exp ( - λ 1 t ) } ,
λ 1 , 2 = [ β ± β 2 - 4 θ χ ] / 2 ,
n + / n λ 2 t [ α σ I 3 t / ( h ν ) 2 ] × [ ( 2 α I 2 / h ν ) + ( σ I / h ν ) + k q Q + 1 / τ ] - 1
n + / n * ( σ I / h ν ) t             ( λ q λ 2 ) .
N + / n = I 3 ( ζ α σ t ) [ ( σ I / h ν ) + k q Q + 1 / τ ] - 1 ( h ν ) - 2 V f ,
n = N + h ν / ( I 2 ζ α t V f )
n = ( A p / I 2 ) ( V o h ν / e R ζ α t V f ) [ V + - V ( x ) ] - 1 .
I ( z ) / I f = A f / A ( z ) ,
- I 2 A d z = I f 2 V f ,
V f = A f - ( I / I f ) d z .
I / I f = [ 1 + a ( z - z f ) 2 ] - 1 ,
e - + SF 6 ( SF 6 - ) * SF 6 -
SF 5 - + F

Metrics